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IntroducƟon:

Offseƫng is an important task in diverse applicaƟons in the manufacturing business. For a set C in the Euclidean plane, the
constant-radius offset with offset distance r is the set of all points of the plane whose minimum distance from C is exactly r.
Formally, this offset curve can be defined as the boundary of the set

∪
p∈C B(p, r), whereB(p, r) denotes a disk with radius

r centered at the point p. That is, the offset is the envelope of a set of disks of equal radius that have their centers along
the input. MathemaƟcally, the same offset curve can also be obtained as the Minkowski sum of C with a disk with radius r
centered at the origin.

For polygons such an offset curve will consist of one or more closed curves made up of line segments and circular arcs,
see Figure 1, leŌ. Held [3] describes how to use a Voronoi diagram, which is a versaƟle tool in computaƟonal geometry, to
compute such an offset efficiently and reliably.

Mitered offsets differ from constant-radius offsets in the handling of non-convex verƟces of an input polygon: Instead of
adding circular arcs to the offset curve, the offset segments of the two edges incident to a non-convex vertex get extended
unƟl they intersect. This type of offset can be generated in linear Ɵme from a straight skeleton [4]. In order to avoid very sharp
corners in the offset, the linear axis can be used in place of the straight skeleton [4], thus obtaining offsets with mulƟ-segment
bevels. See Figure 1, center and right.

A common feature of all these offsets is that the orthogonal distance of each offset element from its defining contour
element is constant.

Figure 1: (LeŌ) The Voronoi-diagram (blue) of an input polygon P (black) enables efficient computaƟon of the constant-radius
offset. One interior offset curve of P is shown in green. The offset curve consists of line segments and circular arcs, and any
point on it is at the same distance from the input in the standard Euclidean distance. (Center) The offset induced by the
straight skeleton (blue) can have sharp corners that are far away from their respecƟve input vertex in the standard Euclidean
distance. (Right) Offseƫngusing the linear axis (blue) bevels the offset compared to the one induced by the straight skeleton.
The offset sƟll consists only of line segments.

Several applicaƟons in industry, such as for garment manufacture, need to construct differently sized pieces from a single
master design. One obvious method is to scale the master template accordingly. However, a naive approach would scale all
elements equally, which need not always be good enough. (For instance, one might want to shrink the overall size of a shirt
without necessarily shrinking its collar size by the same raƟo.) A different approach to resizing is to use offseƫng. To be able
to control the offseƫng process, a common demand is to create non-constant offsets, i.e., offset curves where the distance
to the original input curve varies along that input. Brush stroke generaƟon is another sample applicaƟon that benefits of
variable-distance offsets.



Variable-distance offset curves and surfaces are known in the literature. See, for instance, the work by Qun and Rokne [5]
or Rossignac and Zhuo [6, 7]. However, prior art seems to concentrate on defining and comparing different offsets and is
less concerned with efficiently or robustly compuƟng offset curves. One common approach to construcƟng variable offsets
seems to be based on sampling. Rendering-based methods also are feasible for sketching such offsets by means of a graphics
hardware. However, they incur the addiƟonal problem of having to extract the actual offset curves from the rendered images.

Main Idea:

Consider a set S of verƟces in the Euclidean plane and line segments between some pairs of these verƟces. The line segments
may share common endpoints but they may not intersect otherwise. (In computaƟonal geometry, such an input is called a
planar straight-line graph, PSLG.) Let us denote by S ⊂ R2 the set of points covered by all verƟces and line segments of S.
Furthermore, we consider a weight funcƟon σ : S → R+ that assigns to each vertex p of S a posiƟve weight σ(p) and for
each point on a line segment pq of S we linearly interpolate its weight along pq from σ(p) at p to σ(q) at q.

We now place a disk at each point p of S. In analogy to the so-called prairie fire model, all disks have iniƟally radius zero.
As Ɵme increases, however, the radius of each disk grows proporƟonal to the weight σ(p) of its center point p ∈ S. The
variable-radius offset for a given Ɵme is the envelope of this set of disks. As intended, input sites with small weight will induce
an offset that is closer to them, and input sites that were assigned larger weights will cause their offsets to be farther away.
Formally, this offset is the boundary of the set

∪
p∈S B(p, σ(p) · t). Note that the term σ(p) · t replaces the constant radius r

from the previous secƟon.

Our experience with using skeletonal structures, such as the Voronoi diagram and the straight skeleton, to construct
constant-radius and mitered offsets moƟvated us to look for another Voronoi-like structure to facilitate the computaƟon of
non-constant offsets. It turns out that the variable-radius Voronoi diagram introduced below is such a useful structure. It is
defined relaƟve to both weighted points and variably-weighted line segments.

Preliminaries. The Voronoi diagram VD(S) of a set S of points in the plane, called sites, tessellates the plane into interior-
disjoint regions. Each so-called Voronoi region belongs to exactly one site. The Voronoi region of a site s is the locus of all
points in the plane whose closest site is s. The border between any two Voronoi regions lies on a straight line, namely the
bisector of the regions’ sites, see Figure 2, leŌ.

The prairie fire analogy illustrates this concept: Suppose that fires start in different locaƟons on the prairie and that each
fire expands into all direcƟons, propagaƟng at uniform speed. A point in the prairie then belongs to the region of the parƟcular
fire which reached it first.

Voronoi diagrams have been generalized in several different ways, such as using a different distance measure (e.g., Man-
haƩan distance instead of Euclidean distance), choosing different types of input sites instead of just points (e.g., line segments
or circular arcs), or assigning both addiƟve and mulƟplicaƟve weights to sites. In the prairie fire analogy, the laƩer generaliza-
Ɵon corresponds to starƟng certain fires sooner or have some spread faster. Figure 2, right, shows the Voronoi diagram of a
mulƟplicaƟvely weighted point set.

Variable-radius Voronoi diagram. We introduce the variable-radius Voronoi diagram VDv(S) as a generalized Voronoi dia-
gram with generalizaƟons into two direcƟons: First, the set S of input sites is a set of both verƟces and (non-intersecƟng) line
segments between pairs of these verƟces, i.e., a planar straight-line graph. Second, we assign mulƟplicaƟve weights to these
sites. As described above, verƟces s ∈ S are assigned posiƟve weight σ(s), and the weight of a point on a line segment pq
changes linearly between its endpoints from σ(p) to σ(q).

The distance of a point u in the plane to a vertex site s is defined as the Euclidean distance from u to s, divided by the
weight of that site: d(u, s) := ∥u−s∥

σ(s)
. The distance of u to a line-segment site pq is naturally defined as the minimum distance

of u to any point of the line segment: d(u, pq) := minv∈pq
∥u−v∥
σ(v)

. While this may seem unwieldy at first, we can show that
d(u, pq) can be computed easily using elementary geometry.

As in the case of the standard Voronoi diagram, any point in the plane is in the (generalized) Voronoi region of the site
that it is closest to. An arc that separates two regions comprises all points that have the same distance to two sites and a larger
distance to all other sites.

The variable-radius Voronoi diagram inherits several important properƟes from the mulƟplicaƟvely weighted Voronoi
diagram of points. In parƟcular, the region of a given site need not be connected, cf. Figure 2 (right). That is, the region of a
site may comprise two or more disconnected faces in the Voronoi diagram. Furthermore, bisectors between two verƟces are
circles or circular arcs [2]. Other bisectors, however, are more complex curves in general. A special case is given by the bisector



Figure 2: (LeŌ) The Voronoi diagram of a point set. Each site’s Voronoi region is shaded in a different color. (Right) A
mulƟplicaƟvely weighted Voronoi diagram of the same point set. VerƟces marked with □ have been assigned a weight of
3.0, those marked with× have weight 1.5, while the verƟces shown with • have a weight of 1.0. The bisectors of verƟces of
different weights lie on circular arcs. Note that some Voronoi regions are disconnected.

between a vertex and a line segment of constant weight: It will be a conic secƟon where the vertex site is a focus point and
the supporƟng line of the segment site is the directrix of the conic. Depending on the raƟo of the weights of the segment and
the vertex, the bisector will either be an ellipse, a parabola, or a hyperbola.

The bisectors of a line segment pq between the input verƟces p and q exhibit another interesƟng property: They are full
circles whose diameters on the line supporƟng pq are bounded by a common point and their individual defining point-site, see
Figure 3, leŌ.

Figure 3: (LeŌ) The variable-radius Voronoi diagram (blue) of a simple input of two vertex sites and their connecƟng line
segment (black). A family of offset curves is shown in green. (Right) The variable-radius Voronoi diagram inside a polygonal
input. The marked input verƟces on the leŌ have been assigned a weight of 2.0 while the single marked vertex on the right
has a weight of 0.5. All other verƟces were given the standard weight of 1.0. A single offset curve is drawn in green.

Offseƫng. While the bisectors of VDv(S) consist also of non-trivial curves, it can be shown that the variable-radius offset
itself comprises line segments and circular arcs only. In parƟcular, in Voronoi regions that belong to line-segment sites the
offset will be a line segment also, whereas in regions associated with verƟces the offset element will be a circular arc, see
Figure 3, right.

We can compute this variable-radius offset of S for a given Ɵme t from the variable-radius Voronoi diagram VDv(S). The
approach is idenƟcal to how constant-distance offsets are computed based on Voronoi diagrams or straight skeletons [3, 4].
Roughly, we iterate through all the arcs of VDv(S) and add offset elements in each face that contains points at distance t · σ.
The topological informaƟon encoded in VDv(S) enables us to do this in Ɵme linear in the size of the Voronoi diagram and
in a single iteraƟon, without the need to compute all pair-wise self-intersecƟons of offsets. Furthermore, no detecƟon and
removal of invalid loops is required.



ImplementaƟon. We developed a proof-of-concept C++ code that approximately computes the variable-radius Voronoi di-
agram of planar straight-line graphs. Our implementaƟon is based on CGAL [1]. It also allows us to construct variable-radius
offsets.

Conclusion:

We invesƟgate one specific variant of a skeletonal structure which we call the variable-radius Voronoi diagram. While this
structure is of parƟcular interest in itself, we demonstrate its applicability to robustly construcƟng variable-radius offsets.

A remaining open problem is to generalize the class of input sites to include circular arcs in addiƟon to just line segments
and verƟces. The hope is that this would enable offsets that are G1 conƟnuous for appropriate G1 inputs. However, note
that the offset of a variable-weighted circular arc is not a circular arc. Hence, a beƩer understanding of the mathemaƟcal
characterisƟcs of the resulƟng offsets and of the corresponding Voronoi bisectors is required.
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