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Additive Weights for Straight Skeletons
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Abstract

We introduce an additively-weighted straight skeleton
as a new generalization of straight skeletons. It is
induced by a wavefront propagation process where,
unlike in standard variants, wavefront edges do not
necessarily start to move at the begin of the propaga-
tion process but at later points in time.

1 Introduction

Straight skeletons were introduced to computational
geometry over 20 years ago by Aichholzer et al. [2].
They have diverse applications such as in tool path
generation, mathematical origami, roof design, and
terrain generation. (See, for example, [7] and the ref-
erences cited therein.)

The multiplicatively-weighted straight skeleton was
first mentioned by Aichholzer and Aurenhammer [1]
and then by Eppstein and Erickson [5]. Recently it
was studied in more detail by Biedl et al. [3] who
analyzed under which conditions properties of the un-
weighted skeleton carry over to the weighted pendant.

2 Preliminaries

A straight skeleton is defined as the outcome of a
wavefront propagation process. For a simple poly-
gon P , its wavefront WP (t) changes with time t and
is a set of simple polygons. Initially, at time zero,
WP (0) consists only of P . Then, as time increases,
the edges of WP (t) move towards the interior of P at
unit speed in a self-parallel manner, preserving inci-
dences. Thus, the vertices of WP (t) move along the
bisectors of polygon edges.

In order to maintain planarity of the wavefront
during the propagation process, special processing is
required to resolve non-planarities when they occur:
In an edge event, an edge of the wavefront that has
shrunk to zero length is removed. In a split event, a
reflex vertex v reaches another part of the wavefront.
The wavefront is split at this locus, and two separate
polygons replace the previous polygon to restore pla-
narity of the wavefront after the event. Typically this
will happen when v reaches the interior of a wavefront
edge. However, if v reaches another vertex then more
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complex interactions are possible [4]. The propaga-
tion process ends when all wavefront polygons have
collapsed.

The traces of all vertices of WP (t) over the propa-
gation period then make up the edges of the straight
skeleton S(P ). In addition, if two parallel wavefront
edges move into each other during the wavefront prop-
agation, then the portion common to them is added
to the straight skeleton while the portions that belong
to only one of them remain in the wavefront [3].

To avoid ambiguities, we generally refer to the edges
of the straight skeleton as arcs and reserve edges for
the input polygon and the wavefront. Likewise, we
call the vertices of the straight skeleton nodes.

The wavefront fragments of the polygon edge e at
time t are contained in e+ t · ne, where e is the sup-
porting line of e and ne is its inward facing unit nor-
mal. We denote by e(t) the (possibly empty) set of
these wavefront fragments of edge e at time t. Ev-
ery face of the straight skeleton is traced out by the
fragments of exactly one input edge over time, i.e.,
f(e) :=

⋃
t≥0 e(t) for the face f(e) of edge e.

Straight Skeletons with Multiplicative Weights.
Multiplicatively-weighted straight skeletons, although
introduced very early on, have been studied in de-
tail only recently by Biedl et al. [3]. In the presence
of multiplicative weights, wavefront edges no longer
move at unit speed but instead move at different
speeds depending on a weight function σ : E → R
where E is the edge-set of P . The wavefront frag-
ments of the line e are contained in e+ t · σ(e) · ne.

If all weights are required to be positive, then most
of the well-known properties of straight skeletons are
preserved. One prominent exception is that a face
need not be monotone to its defining input edge any
more. For negative weights, S(P ) need not even be a
tree and may contain crossings [3].

Please visit Held’s CGA Lab [6] for references to
prior work on straight skeletons and several examples.

3 Additively-Weighted Straight Skeletons

3.1 Definition

Given a simple polygon P and an additive-weight
function δ : E → R+

0 , we define the additively-
weighted wavefront WP,δ(t) as follows. As in the un-
weighted case, WP,δ(0) is identical to P . However,
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wavefront edges do not all start to move immediately.
Rather, an edge of the wavefront that is emanated
from polygon edge e will only start to move inwards
at unit speed at time δ(e).

Since wavefront edges no longer move all at once,
wavefront vertices will not travel exclusively along bi-
sectors of input edges. If both incident wavefront
edges have not yet started to move, then the wavefront
vertex will obviously remain stationary. If exactly one
incident wavefront edge has started to move, then the
wavefront vertex will travel on the supporting line of
the other; see Figure 2.

During its propagation process the wavefront will
see instances of edge and split events, and it needs
to be updated accordingly to restore planarity after
the event. Note that even edges and vertices that
have not yet started to move can be involved in both
types of events. (See for instance the edge in the top
right of Figure 1, which collapses before it starts mov-
ing.) The wavefront propagation process ends when
all wavefront polygons have collapsed.

The additively-weighted straight skeleton S(P, δ) is
then defined as the geometric graph whose edges are
the traces of vertices of WP,δ(t) over its propagation
period.

As in the unweighted case, we call edges of S(P, δ)
arcs and its vertices nodes. Similarly, we again call
the loci traced out by the wavefront segments e(t) of
edge e the face f(e) of e, defined as f(e) :=

⋃
t≥0 e(t).

We call the instance when an edge starts to move a
speed-change event.

3.2 Properties

Node Degrees. In unweighted or multiplicatively-
weighted straight skeletons, a node will be of degree
one when it is a leaf of the straight skeleton (its locus
will then be at a vertex of the input polygon) or of
degree three when it is the result of an elementary
edge or split event. Higher node degrees are also pos-
sible and are induced by non-elementary events where
more than three wavefront edges are involved [4].

In addition to these types of nodes, the additively-
weighted straight skeleton can have nodes of degree
two. These occur when a vertex of the wavefront
changes its speed due to an incident wavefront edge
starting to move.

∗ ∗

∗

Figure 1: Polygon(black) with an additively-weighted
straight skeleton (blue). The edges marked by ∗ have
non-zero additive weights. A family of offset curves is
shown in gray and dotted.

Nested Wavefronts. As in the case of unweighted
or multiplicatively weighted straight skeletons with
non-negative weights, the wavefronts of additively
weighted straight skeletons are nested inside each
other.

Lemma 1 Let t1, t2 ∈ R+
0 with t1 < t2. Then

WP,δ(t2) lies within WP,δ(t1).

Proof. Edges that are already moving at time t1 keep
moving towards the interior of WP,δ(t1). Edges that
are still stationary do not move towards the outside
either: Their incident vertices may move, however, as
long as they stay on the same supporting line. As
illustrated in Figure 2, these vertices do not move to
the outside of the wavefront polygon either. �

Crossings, Planarity, and Connectedness. At time
zero, the wavefrontWP,δ(0) is a single simple polygon.
Let t1 be the earliest time at which an edge starts to
move that was not moving initially, i.e., the time of
the first non-trivial speed-change event. Then in the
time interval [0, t1] the wavefront will propagate the
same as if it were the wavefront of a multiplicatively-
weighted polygon, where the weight of each edge is
either 1 if it is already moving, or 0 if it is not yet
moving.

Biedl et al. [3] show that the multiplicatively-
weighted straight skeleton is free of crossings1 for pos-
itive edge weights σ. This result extends to weights
including zero. Therefore, the wavefront propagation
in the time interval [0, t1] will not trace out any wave-
front arcs that cross other arcs.

Now suppose that the wavefront propagation has
not ended by time t1. Then at time t1 one or more
edges will start to move and the wavefront WP,δ(t1)
will consist of one or more polygons. Lemma 1 implies
that we can apply our reasoning to each wavefront
polygon individually. If t2 is the time of the next
speed-change event, then by the same argument no
wavefront arcs traced out during [t1, t2] will cross ei-
ther. Furthermore, arcs traced out during [t0, t1] and
[t1, t2] will be confined to the areas that the wave-
front traced out during their respective time. So no
arc traced out during the latter interval can cross an
arc traced out during the former. By induction, this
claim holds for the entire wavefront propagation pro-
cess.

Lemma 2 The additively-weighted straight skeleton
of a simple polygon is free of crossings.

Note however, that we cannot infer strict planarity
from being free of crossings: Assume v is a wavefront

1Roughly, a geometric graph G contains a crossing if there
exists an arbitrarily small disk B centered on the interior of an
arc such that no (open) half of B is empty of elements of the
graph, or if two nodes of G share the same locus.
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vertex where one incident edge e has not yet started
to move. Let e′ be the other edge incident at v. Then
v travels on the supporting line of e, and the direction
of this movement depends on the angle that e spans
with e′; see Figure 2.

e

e
e′

e′

Figure 2: Vertex v moving on the supporting line of
wavefront edge e that has not started to move yet.

Now let e′ collapse in an edge event. Let e′′ be
the new neighbor of e and let v′ be the new vertex
that was created in this edge event. (At the time of
the event, v′ will be in the same locus as v, which it
replaces in the wavefront.) If the angle at v′ is now
convex where at v it previously was reflex, then v′

will move in the opposite direction of v. This results
in the arc being traced out by v′ to overlap the arc
already traced out by v; see Figure 3.
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Figure 3: After an edge event, a wavefront vertex may
backtrack along an arc previously traced out.

Lemma 3 Let SP,δ(t) be the straight-skeleton fea-
tures traced by the wavefront until time t. If two
points p, q ∈ SP,δ(t) are path-connected on SP,δ(t) ∪
WP,δ(t), then they are path-connected on S(P, δ).
Proof. This is shown for multiplicatively-weighted
straight skeletons in Lemma 13 of [3] by induction on
the events of the wavefront propagation in chronolog-
ical order. We know from their proof that connectiv-
ity of p and q is not broken by edge and split events.
Therefore, it only remains to show that connectivity
is maintained across speed-change events.

First, a speed-change event does not change the
combinatorial properties of the wavefront. It will
only result in vertices potentially moving at different
speeds. Thus, a path between p and q cannot be split
by changes to the wavefront.

Second, let us consider arcs being traced out by a
vertex v of the wavefront. If v is not incident to a
wavefront edge affected by a speed-change event at
time t, it will just continue across the event with no
change, tracing out a continuous arc. If, however, v
is incident to an affected edge, then it will change
direction, and therefore the arc that it traced out up
until t will end at the position of v at time t. However,
there it will connect via a node of degree two to the
arc that v is tracing out after t. Thus, a path that
goes over an arc currently being traced out by the
wavefront cannot be disconnected by a speed-change
event. �

Corollary 4 The additively-weighted straight skele-
ton of a simple polygon is connected.

Faces. For each edge e of P , we defined its face as
f(e) :=

⋃
t≥0 e(t), where e(t) is the set of segments

of the wavefront at time t that were emanated by e.
Initially, e(0) will consist of only one segment that co-
incides with e, but as the wavefront propagates, seg-
ments may get split and segments may get dropped
from e(t) when they collapse. However, at no time
will a segment just jump into existence. Hence each
face is connected.

Note, however, that f(e) is not necessarily a sim-
ple polygon for edges that do not immediately start
to move. The faces in Figure 1 that correspond to
the edges with non-zero additive weights demonstrate
this fact. In clockwise order from the top left, we
have a face whose interior is disconnected, a face with
an empty interior because its corresponding edge col-
lapsed before it started to move, and a face whose
interior is not adjacent to e itself.

In the unweighted straight skeleton, the face of an
edge e is a monotone polygon with respect to the sup-
porting line of e. This is however not always the case
for additively-weighted straight skeletons; see for ex-
ample the topmost face in Figure 1.

Lemma 5 A face of an additively-weighted straight
skeleton need not be monotone with respect to the
edge that emanated it.

Roof Model. The roof model [2] raises the wave-
front propagation into three-space, with the (third)
z-coordinate being the time t. With P embedded in
the t = 0 plane, the wavefronts over time thus form
a polytope over P . This piecewise linear and contin-
uous polytope R(P ) :=

⋃
t≥0(WP (t) × {t}) is called

the roof of P . For unweighted straight skeletons the
roof is a terrain (z-monotone).

The roof model is a useful theoretical tool when
dealing with straight skeletons as it makes some proofs
easier. It is also directly useful as a solution for mod-
eling terrains or actual roofs of buildings.

The roof in the additively-weighted case is defined
similarly as R(P, δ) :=

⋃
t≥0(WP,δ(t)×{t}). It clearly

is no longer strictly z-monotone, since wavefront edges
may stay on the same supporting line during the
propagation, resulting in vertical facets. The house
depicted in Figure 4 has many such facets, namely
the walls, as all input edges have (different) additive
weights assigned to them. The weight assigned to
some edges is larger, resulting in some walls contin-
uing upwards while inclined roof facets already exist
at the same height.

Lemma 6 The roof R(P, δ) induced by an
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Figure 4: A house with a roof induced by an
additively-weighted straight skeleton.

additively-weighted straight skeleton is weakly
z-monotone.

Proof. This is a direct consequence of Lemma 1. �

For each edge e of the polygon, the roof will have at
least one facet, the one incident to e. If the segments
of e see a speed-change event during the propagation
process, one additional facet per segment will be visi-
ble in the roof. Note that all facets of e correspond to
only a single face in the straight skeleton as the “bend”
caused by the speed-change event is not apparent in
S(P, δ). Also note that the total number of facets is
still linear in the size of the input polygon since addi-
tional wavefront segments can only be caused by split
events which are bounded linearly in the input size.

4 Generalizations

Several generalizations seem natural. First, one can
combine multiplicative weights with additive weights.
We postulate that no properties change as long as the
multiplicative weights remain non-negative. If nega-
tive additive weights are allowed then the wavefront
propagation would simply start at a time correspond-
ing to the smallest negative weight. In terms of the
roof model, negative weights merely mean shifting the
whole structure along the z-axis.

Second, the additively-weighted straight skeleton
can of course be defined not only for simple polygons
but for planar straight-line graphs also.

Third, one could even allow more than a single
speed-change per edge. As long as the speed func-
tion for an edge remains piecewise constant, vertices
would still move along straight lines and the straight
skeleton would be quite recognizable.

5 Computation

A simple method is described by Aichholzer et al. [2]
to compute the unweighted straight skeleton: Com-
pute theO(n)many collapse times of all edges and the
O(n2) times of all potential split events, and maintain
them in a priority queue. On events, only a constant
number of edge collapses have to be recomputed at

constant cost each. Since the total number of events is
linear, the overall algorithm runs in O(n2 log n) time
at the cost of O(n2) memory, where n is the size of
the input polygon.

For the additively-weighted straight skeleton, the
same approach can be used. The computation of po-
tential split event times is slightly more involved but
still in O(n2). On speed-change events, a possibly lin-
ear number of collapses have to be recomputed, but
the amortized cost for these is still only linear. There-
fore, the additively-weighted straight skeleton can also
be computed in O(n2 log n) time and O(n2) space.

As in our prior work [8], we use a variant of Aich-
holzer and Aurenhammer’s triangulation-based algo-
rithm [1] for our implementation. Their core idea is
to maintain a kinetic triangulation of the wavefront
polygons, and keep track of triangle collapses in a pri-
ority queue as these signal events. We augmented the
priority queue with the times of speed-change events,
and are thus able to compute the additively-weighted
straight skeleton.

Our implementation is based on CGAL and is ca-
pable of exactly computing the straight skeleton of a
planar straight-line graph with non-negative additive
and multiplicative weights. For instance, the straight
skeletons and offsets in Figures 1 and 4 were produced
by our code.
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