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A B S T R A C T

In geometry, a skeletal structure of a polygonal shape attempts to capture the
essence of some geometric properties of the original shape. Tasks which are
work-intensive or fragile to perform with just the polygonal shape can often
be performed efficiently and robustly once an appropriate skeleton has been
obtained. For instance, the medial axis of a polygon is such a skeleton, and
constant-radius offset curves of a polygon are commonly computed by first
constructing the polygon’s medial axis.

This thesis presents the author’s contribution to the field of computational ge-
ometry, in particular with respect to skeletal structures. We cover mitered off-
sets, which are related to the well-known constant-radius offsets, and variable-
radius offsets, where the distance to the input varies even along a single input
segment. We study how the former can be obtained from straight skeletons, in-
troduced by Aichholzer et al. two decades ago, and we introduce a suitable
skeletal structure that encodes geometric information required to efficiently
construct the latter.

Furthermore, this dissertation covers aspects of weighted straight skeletons. We
discuss properties of multiplicatively-weighted straight skeletons in detail for
different classes of input. We establish that, even in the presence of negative
weights, they are always well-defined since events of the underlying wavefront
propagation can be handled in all cases. We introduce additively-weighted
straight skeletons, discuss their properties, and show how skeletons with both
additive and multiplicative weights can be used in roof and terrain modeling.

Additionally, we present an algorithm to compute the positively-weighted
straight skeleton for monotone polygons with n vertices in O(n logn) time.
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I N T R O D U C T I O N





preliminaries

1P R E L I M I N A R I E S

This cumulative dissertation covers my research on weighted skeletal structures.
The primary structure of interest in my work is the weighted straight skele-
ton. Additionally, we look into a second structure, a so-called variable-radius
Voronoi diagram, in response to a specific application requirement where we
find straight skeletons to be inapplicable.

First, I briefly introduce basic structures from computational geometry so that I
can then summarize my work in Chapter 2Chapter 2. The main body of this dissertation
is a selection of my work already published in or submitted to peer-reviewed
conferences and journals. It can be found in Part IIPart II.

1.1 voronoi diagram

The Voronoi diagram is a well-studied object in computational geometry. It is
named after the Russian mathematician Georgy Feodosevich Voronoy and was
introduced to computational geometry by Shamos [Sha75Sha75] and Shamos and
Hoey [SH75SH75] in the 1970’s.

For a set S of points in the plane, called sites, the Voronoi diagram is the subdi-
vision of the plane into regions, one for each site s ∈ S, such that all points in
the region belonging to s are closer to s than to any other site of S [BCKO08BCKO08].
Figure 1Figure 1 shows a Voronoi diagram for a set of nine sites.

Voronoi diagrams have been generalized in different ways. Instead of the stan-
dard Euclidean metric, different metrics, such as the Manhattan metric (L1) or
the maximum metric (L∞), can be used. Voronoi diagrams can not only be
considered in the two-dimensional plane but also in 3-space or higher dimen-
sional spaces. In fact, any metric space admits Voronoi diagrams. Another
generalization is to extend the set of sites beyond just simple points to various
types of geometric objects. Furthermore, different weights can be introduced
to modify the metric on a per-site basis. Okabe et al. [OBSC00OBSC00] discuss these
generalizations and several others in depth in Chapter 3 of their book.

1.1.1 Medial Axis

The medial axis was considered by Blum in the 1960’s in the context of shape
recognition [Blu67Blu67]. For a simple polygon P, it is the set of all points within P
whose closest point on the boundary of P is not unique. Equivalently, it is the
set of centers of circles within P that touch the boundary of P in two or more
points [OBSC00OBSC00].
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preliminaries

s

Figure 1: A Voronoi diagram of nine sites. The region belonging to the site s is high-
lighted.

Figure 2: A simple polygon (in black) with its Voronoi diagram (in blue). The medial
axis of the polygon consists only of the solid blue segments.
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1.1 voronoi diagram

The medial axis is a subset of the Voronoi diagram of the edge and vertex set
of the boundary of P, and due to its structure it is sometimes also called the
skeleton of P. Figure 2Figure 2 shows a simple polygon and the Voronoi diagram of
its edges and vertices in its interior relative to the standard Euclidean metric.
The curves separating regions are line segments and parabolic arcs. Segments
incident to reflex vertices of the polygon (vertices where the interior angle is
larger than π) are not part of the medial axis.

1.1.2 Applications

The Voronoi diagram is a versatile tool, and Nearest Neighbor queries and Clos-
est Pair are two well-known problems which can be solved efficiently once a
Voronoi diagram is constructed. I refer to the survey by Aurenhammer [Aur91Aur91]
and the book by Okabe et al. [OBSC00OBSC00] for more examples.

An application related to the work in this thesis is tool-path generation. In
his book, Held [Hel91Hel91] describes in detail how to robustly compute Voronoi
diagrams of polygonal structures. Based on the Voronoi diagram, he then con-
structs offsets which can be used as the path of a cutting tool, with no need for
finding self-intersections and avoiding loop removals.

Figure 3: The Voronoi diagram allows for robust and efficient computation of offsets.

The approach bases on two key properties: Offset elements of a site s are con-
tained in the Voronoi region of site s, and the combinatorial structure of the
offset can be obtained directly from the structure of the Voronoi diagram.

Figure 3Figure 3 shows a polygon, its Voronoi diagram, and several offset curves, one
of them in bold and green. Offset segments in the Voronoi region of a vertex
are circular arc segments, and offset segments in the region of a polygonal edge
are line segments. Offset elements of different input sites meet on the bisector
of these sites.
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preliminaries

1.2 straight skeleton

About twenty years ago, Aichholzer et al. [AAAG95AAAG95] introduced the straight
skeleton to computational geometry. As the name suggests it also is a skeletal
structure. However, unlike the medial axis, it comprises straight line segments
only. The straight skeleton of a simple polygon P is defined as the result of a
shrinking process of P. Briefly, the edges of P move inwards at unit speed. The
shrinking polygon, called the wavefront, undergoes changes during this process
to maintain planarity. In particular, in edge events, an edge is dropped from the
wavefront when it collapses to zero length. In split events, the wavefront is split
in two when a reflex vertex moves into an opposite wavefront edge. When all
wavefront components have collapsed, the process ends. The straight skeleton
then is defined as the geometric graph whose edges comprise the traces of all
wavefront vertices during this shrinking process.

Figure 4: A simple polygon (in black) is undergoing a shrinking process. The vertices of
the wavefront (gray and dashed) trace out the edges of the straight skeleton.

Figure 5: The roof induced by the straight skeleton from Figure 4Figure 4.
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1.2 straight skeleton

Figure 4Figure 4 depicts the same simple polygon as before in Figures 2Figures 2 and 33. The
dashed and gray polygons are the wavefront at different stages in the process.

Aichholzer et al. [AAAG95AAAG95] also note that the straight skeleton of a polygon P
induces a unique roof of P: First, P is embedded in the xy-plane. Then, a roof
above P is constructed by lifting each point p in the interior of P by a value
that corresponds to the orthogonal distance between p and the input edge that
traced out the straight skeleton face in which p lies. (For points that lie on an
edge or vertex of the straight skeleton any incident face can be chosen.) Figure 5Figure 5

shows the roof corresponding to the straight skeleton in Figure 4Figure 4.

This roof is a handy tool for proving various properties about straight skeletons,
but it is also useful in itself for modeling terrains or actual roofs of buildings.

1.2.1 Straight Skeletons of Planar Straight-Line Graphs

While originally straight skeletons were only defined for simple polygons as
input, Aichholzer and Aurenhammer [AA96AA96] later extended the definition to
permit planar straight-line graphs, i.e., graphs where edges do not intersect
except at common endpoints.

Since there is no well-defined interior, input edges now send wavefront seg-
ments to both sides. At input vertices of degree one, one additional edge or-
thogonal to the incident input edge is inserted into the wavefront. The offsets
and straight skeleton shown in Figure 6Figure 6 illustrate this procedure.

Figure 6: Straight skeleton of a planar straight-line graph with families of offset curves.
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1.2.2 Weighted Straight Skeleton

As a further generalization of straight skeletons, the weighted straight skeleton
was first mentioned by Aichholzer and Aurenhammer [AA98AA98] and then by Epp-
stein and Erickson [EE99EE99]. It is defined by the same shrinking process except
that edges no longer need to move all at the same speed; see Figure 7Figure 7.

∗

∗

�

�

Figure 7: Polygon with a weighted straight skeleton. The edges marked with ∗move in-
wards at a speed of 3, those marked with �move at a speed of 1/3. Unmarked
edges move at unit speed.

1.2.3 Applications

Straight skeletons have a surprisingly diverse set of applications. Demaine et
al. [DDL98DDL98] use straight skeletons in mathematical origami to solve the Cut-
and-Fold problem: Find a flat folding of a piece of paper, such that a single
straight-line cut on the folding suffices to obtain one piece of a desired shape.

Tomoeda and Sugihara [TS12TS12] apply straight skeletons to create signs with an
illusion of depth. Sugihara [Sug13Sug13] also applies weighted straight skeletons to
computer-aided creation of pop-up cards. (Pop-up cards are folded sheets of
paper that produce meaningful 3D-structures when opened.)

In graph drawing, Bagheri and Razzazi [BR04BR04] produce drawings of trees inside
simple polygons and use straight skeletons to find a good distribution of the
vertices.

In geographic information systems, Haunert and Sester [HS08HS08] note that based
on straight skeletons, topology-preserving area collapsing can be performed.
Vanegas et al. [Van+12Van+12] apply straight skeletons for generating parcels in urban
modeling.

8



1.2 straight skeleton

Laycock and Day [LD03LD03] use straight skeletons for generating large 3D-models
of urban environments based on building footprints. Kelly and Wonka [KW11KW11]
use weighted straight skeletons to procedurally construct a variety of different
architectural surfaces.

Tănase and Veltkamp [TV03TV03] and Aurenhammer [Aur08Aur08] employ (weighted)
straight skeletons for polygon decomposition. Barequet et al. [BEGV08BEGV08] use
multiplicatively-weighted straight skeletons as a theoretical tool for computing
(unweighted) straight skeletons in three-space.

1.2.4 Computation

When introducing the straight skeleton, Aichholzer et al. [AAAG95AAAG95] note that
simulating the wavefront propagation process might work well in practice. For
a polygon with n vertices, this approach runs in O(n3) time and linear space.
By using a priority queue to store all possible events instead of computing
the next event after every change in the wavefront, runtime complexity can be
brought down to O(n2 logn) at the cost of quadratic memory. This is essentially
the algorithm implemented by Cacciola [Cac04Cac04] for CGAL, the Computational
Geometry Algorithms Library [CGALCGAL].

Aichholzer and Aurenhammer [AA98AA98] observe that if one maintains a triangu-
lation of the wavefront polygons, then each edge and split event is witnessed
by the collapse of a triangle of this kinetic triangulation. The converse does
not hold, i.e., a collapse of a triangle does not necessarily indicate an edge or
a split event. Instead, it can indicate a so-called flip event which requires a
local reconfiguration of the triangulation to maintain a valid tessellation of the
wavefront polygon. Simulating the wavefront propagation this way, only linear
space is needed. No tight bounds on worst-case runtime are known. The trivial
worst-case upper bound stems from the fact that there are a linear number of
wavefront vertices over time, these combine to at most O(n3) different triangles,
and each triangle may collapse at most twice. These collapse times are main-
tained in a priority queue, resulting in a runtime of O(n3 logn). Huber [Hub12Hub12]
constructs input for which the algorithm will require Θ(n2 logn) time, leading
to a lower bound of Ω(n2 logn) time in the worst case. We implemented Aich-
holzer and Aurenhammer’s triangulation-based algorithm and found that in
practice it runs in O(n logn) time for a wide range of real-world input [PHH12PHH12,
PH15PH15].

The currently best known algorithm for unrestricted input is due to Eppstein
and Erickson [EE99EE99]. Using advanced closest-pair data structures, they com-
pute the straight skeleton of a simple polygon in O(n17/11+ε) time and space
for any fixed ε > 0. While Eppstein and Erickson only cover simple polygons,
their approach will also work for arbitrary planar straight-line graphs [Hub12Hub12].

9
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Eppstein and Erickson [EE99EE99] also introduce the motorcycle graph in an at-
tempt to isolate the difficulty posed by finding split events. Cheng and Vi-
gneron [CV02CV02, CV07CV07] are the first to describe an algorithm based on motorcycle
graphs. Let P be polygon with r reflex vertices, and let P be restricted to be
in general position, such that all interior nodes of the straight skeleton will
be of degree exactly three. In particular, no two reflex vertices are allowed
to meet during the wavefront propagation process. With these restrictions,
Cheng and Vigneron are able to compute the motorcycle graph induced by P in
O(r
√
r log r) time and O(r

√
r) space [Hub12Hub12]1. From the motorcycle graph, they

obtain the straight skeleton using a randomized divide and conquer approach
in O(n log2 n) expected time, resulting in a total of O(n log2 n+ r

√
r log r) ex-

pected time to compute the straight skeleton of a simple polygon in general
position. Cheng and Vigneron [CV07CV07] also extend their algorithm to handle
polygons with holes. For a polygon with h holes, the algorithm constructs the
straight skeleton in O(n

√
h+ 1 log2 n+ r

√
r log r) expected time. Recently, to-

gether with Mencel [CMV14CMV14], they improve the reduction of straight skeleton
to motorcycle graph to O(n(logn) log r) time. Combined with a new result for
motorcycle graphs by Vigneron and Yan [VY14VY14], the straight skeleton of a poly-
gon in general position can now be constructed by a deterministic algorithm in
O(n(logn) log r+ r4/3+ε) time. For unrestricted polygons, the motorcycle graph
construction by Eppstein and Erickson [EE99EE99] is still relevant, and computing
the straight skeleton from a polygon runs in O(n(logn) log r+ r17/11+ε) time for
any fixed ε > 0.

Huber and Held present another algorithm to construct the straight skeleton
from the motorcycle graph [HH10HH10, Hub12Hub12]. Like in the triangulation based ap-
proach by Aichholzer and Aurenhammer [AA98AA98], they simulate the wavefront
propagation and maintain a graph of the wavefront. Their core idea is to com-
bine this graph with those parts of the motorcycle graph that have not yet been
swept over by the wavefront. The kinetic graph thus obtained always consists of
convex faces only, and thus any change in the topology correlates to an edge of
the graph collapsing to a length of zero. These events are maintained in a prior-
ity queue and processed in order. Their algorithm has a worst-case complexity
of O(n2 logn). However, extensive tests performed with their implementation
suggest a runtime of O(n logn) for practical applications.

1 Huber discusses the space complexity of the algorithm in his thesis as Cheng and Vigneron did
not cover this topic in their work.
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1.2 straight skeleton

1.2.5 Recognition

Graph recognition is the problem of determining, for a given graph G, if it is
a graph of a certain type. This is easy for some graph classes, for instance for
trees (Is it connected? Yes. Is it free of cycles? Yes. Therefore, it is a tree.), but it can
become more complex quickly. Ash and Bolker [AB85AB85] studied the problem of
deciding whether a geometric graph is a Voronoi diagram.

Aichholzer et al. [Aic+12Aic+12] consider the graph recognition problem for straight
skeletons for trees with fixed cyclic order of incidences at each vertex. They
note that each tree whose interior vertices have degree at least three can be
realized as the straight skeleton of a convex polygon. They also consider trees
where, in addition to the cyclic order, all edge lengths are fixed. They solve
the problem for star graphs and for caterpillar graphs. They leave open the
problem for arbitrary trees.

Biedl et al. [BHH13BHH13] consider the following variant: Given a geometric graph
G, is it the straight skeleton of an unknown planar straight-line graph H? They
provide necessary and sufficient conditions for G, and they also provide an al-
gorithm to construct a graph H from G such that G is the straight skeleton of H.

In related research [Aic+15Aic+15], we consider trees with directed edges. Given such
a directed tree T , we construct a polygon P, if it exists, such that during the
wavefront propagation of P, each edge e of T is traced out by a wavefront
vertex along the direction of e. We give necessary and sufficient conditions that
T needs to meet for such a polygon to exist. We then continue to solve the more
complex problem for a tree T where, additionally, we assign to each edge of T
a requirement that it be traced out by a convex or reflex wavefront vertex.

11
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2C O N T R I B U T I O N

2.1 computing offset curves

2.1.1 Mitered Offset Curves

Held [Hel91Hel91] demonstrates that given the Voronoi diagram of a polygonal
shape, constant-radius offset curves can be computed efficiently and robustly.
In Computing Mitered Offset Curves Based on Straight Skeletons [PH15PH15] (page 26page 26),
we apply a similar approach to constructing mitered offsets.

Building upon the triangulation-based algorithm by Aichholzer and Auren-
hammer [AA98AA98], we extend our earlier work [PHH12PHH12] to develop means for
correctly handling input that is not necessarily in general position even on real-
world hardware with limited-precision arithmetic operations.

We present results of extensive performance tests using our implementation,
and we compare offset curves produced by our code to those produced by
other methods used in practice; see Figure 8Figure 8.

(a) (b)

Figure 8: [PH15PH15]: An input polygon (black) with one offset curve. The offset in (a)
is generated by both Clipper [Joh14Joh14] and Geos [San+13San+13], two well-known
polygon-clipping libraries; the offset in (b) is produced by our approach and
has been generated by our code, Surfer.

2.1.2 Variable Radius Offsets

Consider an offset curve, either a constant-radius offset such as induced by a
Voronoi diagram or a mitered offset induced by a straight skeletons. Then, in
some sense, all offset segments will be at the same, constant distance to the
input. For constant-radius offsets that distance is the standard Euclidean dis-
tance, and for mitered offsets it is the orthogonal distance to the corresponding
input segment.

13
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In Generalized Offsetting of Planar Structures Using Skeletons [HHP16HHP16] (page 28page 28),
we seek offset variants where the offset distance may vary, not only between
the different input sites, but even along one input site. This is a requirement
that cannot be met with standard or weighted Voronoi diagrams or weighted
straight skeletons. Yet, we still strive for an underlying skeletal structure which
enables robust and efficient generation of multiple families of such variable
offsets.

We define and study what we call a variable-radius Voronoi diagram, which is
a closest-site Voronoi diagram where the distance of a point in the plane to a
line-segment site s is weighted differently for different points along s. Based
on this diagram we can create the kind of offsets we seek; see Figure 9Figure 9.

(a) (b)

Figure 9: [PH15PH15]: Variable Voronoi diagrams of input shapes with one offset curve.
The size of vertex markers is proportional to their weight. Note how the
offset distance varies along input segments that have non-constant weights.

2.2 weighted straight skeletons

Several properties have been shown by Aichholzer et al. [AAAG95AAAG95] for the
unweighted straight skeleton of a simple polygon. For instance, the straight
skeleton of a polygon is a tree, it partitions the interior of the polygon into
faces monotone to their corresponding input edge, and it induces a roof that is
a terrain and has no minima in its interior.

2.2.1 Multiplicatively Weighted Straight Skeletons

Even though, as summarized in Section 1.2.3Section 1.2.3, multiplicatively-weighted
straight skeletons have been used for years in a large number of appli-
cations, very little investigation in the principal properties of weighted
straight skeletons has been done. With Weighted Straight Skeletons in the
Plane [Bie+15bBie+15b] (page 30page 30), we try to close this gap between theoretical un-
derstanding and practical needs. We study in detail which properties of the
unweighted straight skeleton carry over to its weighted pendant for polygons
and for polygons with holes; see Table 1Table 1.

14



2.2 weighted straight skeletons

Polygon with holes σ ≡ 1 σ positive σ arbitrary

S(P) is connected X Lemma 15 X Lemma 15 × Lemma 12

S(P) has no crossing X Lemma 6 X Lemma 6 × Lemma 3

f(e) is monotone w.r.t. e X as in [AAAG95AAAG95] × Lemma 11 × Lemma 11

bdf(e) is a simple polygon X as in [AAAG95AAAG95] × Lemma 8 × Lemma 8

roof is z-monotone X Lemma 4 X Lemma 4 × Lemma 5

S(P) has n+ v− 1+ h arcs X Corollary 17 X Corollary 17 × Lemma 3

S(P) is a tree × Corollary 17 × Corollary 17 × Lemma 12

Table 1: [Bie+15bBie+15b]: Results for a polygon with h holes, with n denoting the number of
vertices of the polygon P and v denoting the number of nodes of the straight
skeleton S(P).

We provide a non-procedural characterization of the roof and the straight skele-
ton of convex polygons with arbitrary weights, and we show that it can be
computed in linear time.

As Kelly and Wonka [KW11KW11] and Huber [Hub12Hub12] observed before us, the
weighted straight skeleton is ambiguously defined when parallel wavefront
edges of different weights become adjacent. We note a second ambiguity in the
presence of negative weights concerning the pairing of wavefront edges after
split events. In fact, it is not even clear that there always is a pairing of edges
such that the wavefront is planar again after a split event.

2.2.2 Existence of Weighted Straight Skeletons

It is this last issue that we focus our attention on in Planar Matchings for Weighted
Straight Skeletons [BHP14BHP14] (page 32page 32). We look at directed pseudo-line arrange-
ments, and introduce planar matchings on pseudo-lines. We then translate the
problem of finding a planar matching into a stable roommates problem, and by
using results by Tan [Tan91Tan91] and Tan and Hsueh [TH95TH95] we are able to show
that for our special case the stable roommates problem always has a solution.
This solution translates back directly to yield all possible pairings of wavefront
edges after a split event.

Any potential ambiguity of the wavefront after an event follows from the fact
that from the solution of some stable roommates problems more than one pla-
nar matching can be obtained. Furthermore, using our framework we can now
show that the weighted straight skeleton is in fact well defined and exists for
all polygons and weights.

15
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2.2.3 Additively Weighted Straight Skeletons

In the wavefront propagation process, multiplicative weights translate to wave-
front edges moving faster or slower, or even towards the outside of the poly-
gon if weights are negative. In Straight Skeletons with Additive and Multiplica-
tive Weights and Their Application to the Algorithmic Generation of Roofs and Ter-
rains [HP16HP16] (page 34page 34), we extend this concept and add additive weights, which
translate to the movement of edges being delayed.

Like in previous work, we study the properties of the resulting additively-
weighted skeleton and show that it is well defined. We argue that multiplica-
tive weights need not stay constant over time, but that any piecewise constant
weight function for edge speeds will result in valid roofs and skeletons.

These concepts enable more versatile roof modeling as well as terrain genera-
tion; see Figures 10Figures 10 and 1111.

(a) (b)

Figure 10: [HP16HP16]: An additively-weighted straight skeleton and the roof of a house
which it induces.

(a) (b)

Figure 11: [HP16HP16]: (a) A gablet roof, induced by the straight skeleton of a rectangle
with appropriate weight functions. (b) The terrain induced by the straight
skeleton of a planar straight-line graph of a river system. Faces of the terrain
are at different slopes due to different multiplicative weights, and some faces
start at a larger height due to additive weights.
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2.2 weighted straight skeletons

2.2.4 Straight Skeletons of Monotone Polygons

The unweighted straight skeleton of a convex polygon coincides with the me-
dial axis or Voronoi diagram, which Aggarwal et al. [AGSS89AGSS89] show how to
compute in linear time. In our work [Bie+15bBie+15b] (see Section 2.2.1Section 2.2.1), we are able
to extend this result to computing the weighted straight skeleton of convex
polygons in linear time as well.

On the other hand, the approach of Eppstein and Erickson [EE99EE99], which runs
in O(n17/11+ε) time and space, is still the best known result for unrestricted
input. For polygons with holes, the known lower bound is Ω(n logn), which
can be shown by reducing sorting to computing straight skeletons [Hub12Hub12]. No
tight bounds are known for polygons, polygons with holes, or planar straight-
line graphs.

In A Simple Algorithm for Computing Positively Weighted Straight Skeletons of Mono-
tone Polygons [Bie+15aBie+15a] (page 36page 36), we present an algorithm to compute the
straight skeleton of a monotone polygon with n vertices in O(n logn) time
and linear space. We split the polygon into two monotone chains, and we
observe that the wavefront propagation of each chain independently can be
simulated in O(n logn) time as every change of the wavefront is witnessed by
an edge-collapse. The two straight skeletons thus obtained can be merged into
the straight skeleton of the polygon again in O(n logn) time; see Figure 12Figure 12.

Figure 12: [Bie+15aBie+15a]: A monotone polygon and its straight skeleton in blue. The
straight skeleton of the lower chain is shown in red and dashed, the merge
line between the straight skeleton of the upper and lower chain in black and
dashed.
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P U B L I C AT I O N S

Note:
The abridged version of this work does not contain full copies of the papers
that comprise this cumulative thesis. Instead, only references are provided.
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