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On Modeling Coverage Areas of Anisotropic Transmitters by Voronoi-like
Structures Based on Star-Shaped Distance Measures
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Abstract. The geometric modeling of coverage areas is a well-known problem in the analysis
of networks of sensor or transmitters. Prior work often uses Voronoi diagrams of the device
locations to obtain estimates of their coverage areas in the plane. In this work we extend these
approaches by allowing the signal propagation to be non-uniform both among the devices as
well as relative to di�erent directions for an individual device. Depending on whether or not
the spreading of an anisotropic signal is stopped once it reaches a point of the plane that
has already been covered by some other signal, we get connected or disconnected coverage
areas. A proof-of-concept implementation of our algorithms is freely available via GitHub.
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1 INTRODUCTION

Consider a set S of points in the plane, called sites, and a signal that is sent out from each site. Now assume
that each signal starts at the same time t, say time t := 0, and propagates with unit speed uniformly in all
directions. The locations at time t ≥ 0 that are reached by a signal sent out from a site s ∈ S is given by a
circle (�o�set circle�) of radius t centered at s, and the area that has been covered by that signal by time t is
the corresponding circular disc (�o�set disk�).

For t su�ciently small, no pair of these discs will intersect. However, as t increases, intersections will
occur. Apparently, intersections of two such circles correspond to points of the plane that are reached by
two di�erent signals at the same time. Assigning each locus of the plane to the site whose signal reached it
�rst yields a partition of the plane that is well-known as the Voronoi diagram of S; cf. Figure 1(a). Adjacent
regions of this partition are separated by straight-line segments. (We refer to the textbook by Okabe et al. [19]
for more background information on Voronoi diagrams of point sites.) The boundary of the union of all o�set
disks at time t is commonly called the wavefront of S at time t. It is easy to see that every wavefront of S
consists of circular arcs whose endpoints lie on the edges of the Voronoi diagram of S.
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Figure 1: (a) The Voronoi diagram of point sites. Wavefronts for some speci�c points in time are shown by
dashed curves. (b) The multiplicatively weighted Voronoi diagram has regions which need not be connected
(e.g., the light-blue region). Again, some wavefronts are shown by dashed curves.

Voronoi diagrams can be generalized to settings where the signals are allowed to travel at di�erent speeds.
In order to model di�erent speeds, a weight σ(s) is assigned to each site s that speci�es how fast the signal
travels: In this modi�ed setting, at time t the signal has reached points that lie at a distance σ(s) · t from s.
The corresponding Voronoi diagram is known as multiplicatively weighted Voronoi diagram [6]. The common
boundary of two adjacent regions is no longer a line segment but is a circular arc. Also, the region associated
with a speci�c site s can now be disconnected or multiply-connected; cf. Figure 1(b). In a similar way, one
can generalize Voronoi diagrams by allowing the sites to start emitting their signals at di�erent points in time.
This leads to the concept of additively weighted Voronoi diagrams.

Voronoi diagrams have become an important geometric tool for modeling and analyzing coverage areas of
sensors and transmitters. We refer to [4, 14, 18, 22] for sample publications on this application. Common to
these publications is the fact that the signal propagation is assumed to be uniform both over all sites and over
all directions for each site.

2 OUR CONTRIBUTION

The assumption that signals and their spreading are uniform provides only a rather coarse approximation of
reality. Rather, di�erent sites should be assumed to emit signals of di�erent strengths. Furthermore, the
spreading of a signal should be assumed to be anisotropic, i.e., to vary with the direction. For instance,
antennas used by FM broadcast stations tend to have at least some amount of directivity.

In this work we show how concepts of computational geometry can be applied to provide a such re�ned
model for a subsequent coverage analysis: We interpret increasing distance in the Voronoi setting as decreasing
signal strength and provide a system where initial signal strength may vary among the sites and its rate of
change may vary over di�erent directions for each site. We approximate the azimuth radiation patterns by
(star-shaped) polygons. Depending on whether or not the spreading of a signal is stopped once it reaches
a point of the plane that has already been covered by some other signal, we get connected or disconnected
coverage areas.

3 STAR-INDUCED VORONOI DIAGRAM

In order to model an anisotropic spreading of signals, we consider a variant of point-site Voronoi diagrams:
We no longer use an o�set circle to model the area covered by one site's signal. Rather, we replace the circle
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by a star-shaped polygon that contains the site in its kernel. (Recall that a polygonal area is star-shaped if
it contains at least one point from which its entire boundary is visible; the set of all those points is called
its kernel.) We call such a polygon an o�set star. Mitered o�sets of an o�set star are the appropriate
generalization of the expansion of o�set circles; cf. Figure 2: If a vertex v of the o�set star of s at time t is at
distance t · d from s, for some d ≥ 0, then it will be at distance t′ · d from s at time t′, thereby also moving
on the ray from s through v. Of course, we allow o�set stars of di�erent shapes and sizes for di�erent sites.
And, in an analogy to additively weighted Voronoi diagrams, we allow the o�set stars to start their expansion
at di�erent points in time.

One way to interpret this generalization is that each input site is the location of a transmitter whose signal
strength decays with distance, but not at the same rate in every direction. Then, o�set stars of the same
shape but at di�erent sizes can be seen as transmitters with the same anisotropic emission characteristics but
whose signals decay at di�erent rates. Furthermore, the wavefronts derived from the expansion of all o�set
stars are iso-contours of signal strength.

Figure 2: Six sites with di�erent o�set stars are shown. Some mitered o�sets for distinct points in time show
the expansion of the o�set stars, i.e., how the signals spread in di�erent directions.

In theory, any star-shaped polygon that contains its site in its kernel can be used as o�set star for that site.
Of course, the more vertices the polygon has, the �ner a direction-dependence of the spreading of the signal
can be modeled. Feedback obtained from companies tells us that polygons with 10�20 vertices will be good
enough for practical applications. Note that the o�set stars shown in this work (cf. Figure 2) were chosen
for visual clarity and simplicity rather than genuine practical relevance. In practice, (mostly) convex rather
than extremely spiky shapes will prevail as regions that model the (horizontal) transmission characteristics of
transmitters and sensors.

Similar to how classic Voronoi diagrams tessellate the plane into regions such that all points within the
same region have been reached �rst by the same o�set circle, we now want to partition the plane into regions
such that all points of a region are reached �rst by the same o�set star. We call this structure the star-induced
(weighted) Voronoi diagram; cf. Figure 3. As for standard multiplicatively weighted Voronoi diagrams, some
regions may be disconnected and consist of more than one face. For instance the purple region of the site
close to the bottom-right corner of Figure 3 consists of two faces. (Several more disconnected components
show up outside of the image frame.)

3.1 Computing a Star-Induced Voronoi Diagram

For the sake of descriptional simplicity, we start with assuming that all additive weights are zero, i.e., that all
signals start to spread at the same time. All o�set stars are scaled uniformly such that no pair of o�set stars
overlaps at time t := 1. (This can be done easily based on the standard Voronoi diagram of the sites.)

We will now take a look at how that portion inside of the wavefront that belongs to a site's region changes
as time progresses. At time t := 0, the signal of each transmitter has not yet spread at all. Hence, at this
time, each site's region within the wavefront only consists of the site itself. By our assumption, at time t := 1
no two signals have yet interfered, and each site's signal has covered its corresponding o�set star.
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Figure 3: A sample star-induced Voronoi diagram for the sites shown in Figure 1. Each region is assigned a
unique color and its o�set star is shown. Black dashed lines show a family of wavefronts.

Of course, intersections of the o�set stars will occur as time progresses. To get a hand on these intersections
and obtain an actual algorithm for constructing a star-induced Voronoi diagram, we lift the entire problem
into R3, where the input plane (of R2) is the xy-plane and the third coordinate represents the time t. Each
site's signal is represented by one upside-down, in�nitely tall, right pyramid whose apex coincides with the
site's location. The inclinations of the lateral faces of the pyramid are chosen such that the intersection of
the pyramid with the plane that is parallel to the xy-plane and whose t-value equals 1 matches exactly the
boundary of the o�set star. We call such a pyramid an o�set pyramid. The intercept theorem implies that
the intersection of the o�set pyramid with some other plane parallel to the xy-plane yields a polygon that is
a mitered (inward or outward) o�set of the o�set star that de�nes the pyramid.

Theory knows of a fairly general relation between Voronoi diagrams in R2 and lower envelopes of suitable
distance functions in R3, see [9]. This relation is also applicable to our problem: The lower envelope of all
o�set pyramids projected to the xy-plane or, equivalently, their so-called minimization diagram, yields our
star-induced Voronoi diagram.

One can show that a delay in the start time of the signal of site s can be handled by lifting the pyramid
of s vertically upwards above s: If it is to start at time t′, then its apex lies (vertically above s) in the plane
t = t′. No other modi�cation of this general scheme is needed.

The relation between Voronoi diagrams in R2 and lower envelopes in R3 also provides further insights: If
each o�set star has only a constant number of edges then results by Edelsbrunner [8] tell us that the maximum
combinatorial complexity of the star-induced Voronoi diagram of n sites is Θ(n2α(n)), where α is the extremely
slow growing inverse Ackermann function. Furthermore, the divide&conquer algorithm presented by Agarwal
et al. [1] allows computing the lower envelope and, thus, also the star-induced Voronoi diagram of n sites in
worst-case time O(n2+ε), for any �xed ε > 0. These complexity bounds can be adapted in a straightforward
way if the n o�set stars would have more than O(n) edges in total.
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3.2 Implementation

We have developed a proof-of-concept implementation of this approach using exact arithmetic, based on Cgal
and, in particular, based on Cgal's 3D Envelopes package [12] that implements the algorithm described by
Agarwal et al. [1]. To make it easier to use existing Cgal code, we decided to use �nite triangles as the
lateral faces of our pyramids instead of in�nitely large ones. Of course, this raised a new problem: How tall is
�su�ciently tall� to get the correct lower envelope and, thus, also the star-induced Voronoi diagram?

To obtain an upper bound we proceed as follows. First, we consider the supporting lines of all edges of the
o�set stars as they move away from their respective stars. At some point in time each supporting line will have
the entire bounding box B of the input sites on the same side. If we make all pyramids at least this tall, then
the projection of every pyramid onto the xy-plane will cover all of B, and the union of the pyramids' lateral
faces projected to the xy-plane will form a star-shaped polygon whose kernel contains all of B. This implies
that the minimization diagram restricted to B is guaranteed to represent the Voronoi diagram restricted to B.
However, using pyramids of that size does not guarantee that the minimization diagram correctly represents
the Voronoi diagram outside of B, even in places where it is de�ned.

Therefore, as a second step, we also attempt to �nd the latest point in time when a re�ex vertex of the
mitered o�set of an o�set star pierces the supporting plane of any other pyramid face. After this time we know
that the boundary of the minimization diagram will not see new vertices appear even if we proceed further
in time. There still might be changes as edges of the boundary shrink to length zero but if need be, these
changes could be dealt with easily. (In a nutshell, we store the times of these events in a priority queue and
proceed similar to the standard theory of wavefront propagation, see, e.g., [16].)

We emphasize that the question of how tall the pyramids need to be, respectively how far in time one has
to go with the wavefront propagation, is mostly academic. In practice, we are almost certainly given a region
R of interest for which we are to compute the diagram. And this is easily achieved, since it su�ces to ensure
that R is covered by the projection of each pyramid. Then we can compute the minimization diagram. Seen
from a purely theoretical point of view, the algorithms to compute lower envelopes [1] work just �ne with
in�nitely large surfaces, and implementational convenience is of no concern, anyway.

4 STAR-INDUCED SKELETON

If the star-induced Voronoi diagram described in the previous section is used to model coverage areas, signals
are sent out from sites, and then they spread across the plane R2 without a�ecting each other: Recall that the
star-induced Voronoi diagram may contain disconnected regions, which implies that one signal had to travel
over an area already covered by some other signal. Now we consider a second variant in which the signal paths
do not overlap with each other. It is based on straight skeletons and allows modeling coverage areas that are
connected.

4.1 Preliminaries

The straight skeleton of a polygon was introduced to computational geometry by Aichholzer et al. [3]. It is
an angular bisector graph that is the result of a wavefront propagation process: The edges of the polygon
start moving inwards in parallel and at the same speed while, initially at least, maintaining their neighborhood
relations. Similarly, to our expanding o�set stars, these moving edges, the so-called wavefront edges, form the
wavefront polygon. Updates to the wavefront happen, when edges collapse to a length of zero and are removed
in so-called edge events, or when a vertex of the wavefront polygon moves into a previously non-incident edge,
thereby splitting a wavefront polygon into two subpolygon at split events. The process is shown for a polygon
in Figure 4(a).

The straight skeleton can be generalized by allowing edges to move at di�erent speeds, resulting in the
(multiplicatively) weighted straight skeleton, �rst mentioned by Aichholzer and Aurenhammer [2] and Eppstein
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Figure 4: (a) The (unweighted) straight skeleton (in blue) plus a family of wavefronts (dashed) for the green
polygon. (b) The weighted straight skeleton for the case that edges marked with ∗ have twice the weight and
edges marked with O have half the weight of the unmarked edges.

and Erickson [11]. Many, though not all of the properties of unweighted straight skeletons carry over to
positively weighted straight skeletons. For instance, the straight skeleton of an n-vertex polygon is still a
tree with O(n) edges and has no crossings. However, the faces induced by the straight skeleton are no
longer necessarily monotone with respect to their de�ning input edges [5]. Figure 4(b) depicts a weighted
straight skeleton. Further, additive weights can be employed where wavefront edges start moving at di�erent
times [16].

The concept can be further generalized by considering arbitrary planar straight-line graphs (PSLGs) as
input instead of just one polygon [2]. The edges of a planar straight-line graphs are straight-line segments
that do not intersect except at common endpoints which form the vertices of the graph. Vertices of degree
one need some special setup of the wavefront, but other than that the wavefront propagation proceeds just
like for the straight skeleton in the interior of one polygon; cf. Figure 5.

The currently fastest straight-skeleton algorithms with the best worst-case bounds are by Eppstein and
Erickson [11] and Vigneron et al. [7, 21]. These algorithms seem di�cult to implement, though. The straight-
skeleton code Bone by Huber and Held [17] handles PSLGs as input and runs in O(n log n) time and O(n)
space in practice. However, it is not capable of handling weighted skeletons.

Recently, a straight-skeleton library (�Surfer2�) has been developed by the authors' group at Salzburg [10].
It implements an extended version of a straight-skeleton algorithm by Aichholzer and Aurenhammer [2]; it
accepts weighted PSLGs as input and computes their weighted straight skeleton. Surfer2 is available under
a free license at https://github.com/cgalab/surfer2.

4.2 Star-Induced Skeleton

Now consider a set of sites as in Section 3.1, again with their star-shaped o�set stars scaled such that at time
t := 1 no two o�set stars overlap or intersect. We know that the wavefront consists of wavefront vertices and
edges that move away from their sites at di�erent but constant speeds as time progresses. Furthermore, every
wavefront edge also moves away at a constant speed from the corresponding edge of its initial o�set star (at
time t := 1). Thus, this propagation mirrors exactly the wavefront propagation employed in the de�nition of
straight skeletons, where edges move in a self-parallel manner at constant speeds.

Hence, we can view the o�set stars at time t := 1 as a PSLG. Each edge e of that PSLG is weighted
according to the orthogonal distance of its corresponding site from e. The resulting (multiplicatively) PSLG
can be taken as the input for a straight skeleton algorithm. Inside of each o�set star, the wavefront propagation
will cause the o�set star to collapse exactly at the site in a (multi-)edge event. On the outside of the o�set
stars, the wavefront propagation will observe split and edge events as it progresses. Once the wavefront
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Figure 5: Straight skeleton of a planar straight-line graph with families of o�set curves.

propagation has �nished, the entire plane has been tessellated by the straight skeleton. We call the resulting
structure the star-induced skeleton; cf. Figure 6.

As a result of how the straight skeleton propagation works, a site's signal stops to spread once it reaches
a point that had already been covered by some other signal. Also, as straight skeleton faces are connected,
this yields a partition of the plane into regions where no region is disconnected. In order to model the actual
coverage areas we apply a post-processing step and merge faces that were traced out by edges that belong to
the same o�set star and, thus, obtain one connected region per input site, i.e., per signal.

Implementation Our implementation for computing the star-induced skeleton is based on Cgal and our
own Surfer2 library. We �rst compute appropriately scaled o�set stars and appropriate weights for all edges
of the weighted PSLG. Then input the resulting weighted PSLG into the straight skeleton library to compute
the straight skeleton of all o�set stars. In a post-processing step we then merge straight-skeleton faces that
come from di�erent edges of the same o�set star, thus obtaining our star-induced skeleton that models the
coverage areas.

5 DISCCUSSION AND CONCLUSION

We present two models of coverage areas of anisotropic transmitters in the plane. Both models rely on Voronoi-
like structures induced by star-shaped distance measures, but they di�er in how the signals are assumed to
interact: star-induced Voronoi diagrams model disconnected coverage areas while star-induced skeletons model
connected areas.
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Figure 6: A sample star-induced skeleton for the same weighted sites as in Figures 1 and 3. Dashed blue
lines are straight-skeleton arcs that are removed in the post-processing step, solid blue lines are the �nal edges
tessellating the planes into distinct regions, with one connected region per input site. A family of wavefronts
is shown for the same points in time as in Figure 3.

Our current implementation makes use of exact arithmetic, as provided by CGAL. Not having to worry
about numerical stability problems caused by the use of a standard �oating-point arithmetic allowed us to
save time devoted to the implementational work. Experimental tests documented in [10] show that Surfer2
achieves O(n log n) runtime for the computation of straight skeletons of n-vertex weighted PSLGs. But those
tests made it also apparent that there is a signi�cant price to pay for the use of exact arithmetic.

Hence, it seems natural to extend the algorithm discussed in [20] to positive weights, in an attempt
to provide an alternative implementation that runs on a standard �oating-point arithmetic. Work on the
computation of lower envelopes that does not rely on CGAL and exact arithmetic has already been started at
the authors' group. This can be expected to facilitate an actual use of our work for real-world applications.

Another interesting avenue for further work is research on the combinatorial complexity bounds for star-
induced Voronoi diagrams. Preliminary experiments indicate that the current bounds are far too pessimistic
for practical input. Indeed, theoretical and practical analysis shows that multiplicatively weighted Voronoi
diagrams of point sites can be assumed to have only a slightly super-linear combinatorial complexity [13, 15].
It is a fascinating question whether and under which conditions these results carry over to our star-induced
Voronoi diagrams.

Finally, there is another avenue for both practical as well as theoretical work: It is a law of physics that
transmission distance attenuates the signal strength. Similar to prior work on the Voronoi-based modelling
of coverage areas we also assume signal strength to decay linearly with distance. However, �eld strength
of a radio signal decays with the square of the distance. Hence, a re�ned modeling of coverage areas for
long-distance signal propagation will bene�t from resorting to another distance measure.
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6 SOURCE CODE

Our proof-of-concept code is available via GitHub and can be used freely under the GPL(v3) license: See
https://github.com/cgalab/stardist/.
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