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Image Forensics

detecting the fingerprint:
prove that a certain camera took a given image
prove that two images were taken by the same device
image is natural and not a computer rendering

absence of the fingerprint in individual image regions
maliciously replaced parts of the image (integrity
verification)

[Fridrich, 2009]
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Image Forensics

strength or form of the fingerprint
reconstruct processing history
e.g. fingerprint as template to estimate geometrical
processing (scaling, cropping, or rotation)
non-geometrical operations identified by influenced
strength of the fingerprint

spectral and spatial characteristics of the fingerprint
identify the camera model
distinguish between a scan and a digital camera image

[Fridrich, 2009]
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Requirements on a camera identifier (fingerprint)

high dimensionality to cover large number of cameras
uniqueness no two cameras have the same fingerprint

stability over time and typical range of physical conditions
under which cameras operate

robustness to common image processing
brightness, contrast, and gamma correction
filtering
format conversions
resampling and JPEG compression

universality virtually all digital cameras have it

[Goljan, 2008]
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Detecting forgeries - visual sensor classification

detecting duplicated image regions
[Popescu and Farid, 2004a]
using statistics to reveal forgeries
[Popescu and Farid, 2004b]
detecting traces of resampling
[Popescu and Farid, 2005a]
forgeries in scientific images [Farid, 2006]
intrinsic lens radial distortion [Choi et al., 2006]
color filter array interpolation
[Popescu and Farid, 2005b, Bayram et al., 2006,
Swaminathan et al., 2007]
imaging sensor types [Khanna et al., 2007a]
cell phone cameras [Sankur et al., 2007]
sensor dust characteristics [Dirik et al., 2007b]
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Camera identification: Noise patterns

sensor imperfections [Lukás̆ et al., 2005]
sensor noise [Lukás̆ et al., 2006a, Lukás̆ et al., 2006b,
Chen et al., 2007a, Khanna et al., 2007b,
Chen et al., 2008]
noise features [Gou, 2007]
common source digital camera from image pairs
[Goljan et al., 2007]
CCD photo response non-uniformity
(PRNU)[Chen et al., 2007b]
improvements... [Sutcu et al., 2007]
noise in scaled and cropped images
[Goljan and Fridrich, 2008]
printed images [Goljan et al., 2008]
camera model identification [Filler and Fridrich, 2008]
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Photo Response Non-Uniformity (PRNU)

(Main) research group: Lukás̆, Chen et al., Goljan, Fridrich,
Filler, et al.
PRNU is injected into the image during acquisition

before the signal is quantized
before the image is processed in any manner
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Sensor Output Model - Intuitive View

1 light cast by the camera
optics projected onto
pixel grid of the imaging
sensor

2 amplification and
quantization

3 Color Filter Array
interpolation (or
demosaicking)
color correction,
gamma correction

Finally:
evt. filtering (de-noising,
sharpening)
JPEG: quantization
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Sensor Output Model - Mathematic Model

I = gγ [(1 + K )Y + Ω]γ + Q (1)

I quantized signal before demosaicking
g gain factor
γ gamma correction factor
K zero-mean noise-like signal - SENSOR

FINGERPRINT
Ω other noise sources
Q distortion by quantization and/or compression
Y scene light intensity
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Fingerprint Estimation

Sensor fingerprint is a noise-like signal.
Sensor noise is . . . well, noise.
How to find noise? Denoise the image, then diff it to the
original.
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Wavelet based Noise-Filter[Mihcak et al., 1999]

Do a 4th-level wavelet decomposition (db8)
For each high-frequency sub-band, and for
each window size w ∈ {3,5,7,9}, estimate
local variance:

a h

v d

σ̂2
w [i , j] = max(0,

1
w2

∑
(i,j)∈N

h2[i , j]− σ2
0)

Pick the smallest in each point, that’s our σ̂2[i , j].

Apply a Wiener filter: hden[i , j] = h[i , j] σ̂2[i,j]
σ̂2[i,j]+σ2

0
.

Inverse the wavelet transform.
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Fingerprint Estimation, II

Noise residual of one image is now W = I − F (I).
Fingerprint for many images? ⇒ Average them.
Observation: brighter regions contain more of the
fingerprint. ⇒Weight them.

K̂ =

∑n
i=1 Wi Ii∑n
i=1(Ii)2

K̂ is our camera fingerprint.

[Goljan, 2008]
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Fingerprint Estimation, III

PRNU is unique to the sensor.
Other artifacts are shared among cameras of same model
or sensor design.

K̂ contains all systematic components in images, that is,
artifacts introduced by:

color interpolation
JPEG compression
on-sensor signal transfer
sensor design

[Fridrich, 2009]
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Suppress artifacts by camera model or sensor design

Artifacts are periodic in row and column averages of K̂ ,
while the PRNU is assumed to follow a zero-mean random
distribution.
Artifact suppression by subtracting row and column
averages

K̂ [i , j]′ = K̂ [i , j]

− 1
m

m∑
i=1

K̂ [i , j]− 1
n

n∑
j=1

K̂ [i , j]

+
1

mn

m,n∑
i=1,j=i

K̂ [i , j]

[Goljan, 2008]
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Linear Pattern

K̂ − K̂ ′ is the linear pattern - used to classify camera model
or brand for camera model identification see
[Filler and Fridrich, 2008]
In the presented work, the linear pattern is only a
confounding factor, so from now on, K̂ ′ is our fingerprint.
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Fingerprint Detection

Was image taken with a given camera?
Does image noise residual contain camera fingerprint?
noise residual of image I under question: W = I − F (I)
binary hypothesis test:

noise only hypothesis: W = Θ
fingerprint presence hypothesis: W = IK̂ ′ + Θ

Θ denotes pure noise - sequence of random variables
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Decision

correlate W of image I with IK̂ ′

if NCC ≤ NCCthreshold : noise only
if NCC > NCCthreshold : fingerprint present
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Setup

database with images sorted by model/camera
split the files into two sets

one for estimating fingerprints
the other for evaluation of detection performance

randomly pick 50 images for each camera for fingerprint
estimation
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Determine NCCthreshold - Step 1

35 cameras, 7 brands, 16 models
images which were not used for fingerprint estimation
correlate:

all images taken with a source camera ck with the
respective source-camera-fingerprint K̂ ′(”matches”)
all images taken by a camera ci with the fingerprints of
cameras c1, c2, ... ci−1, ci+1, ... ck
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Determine NCCthreshold - Step 2

histograms of all correlations of images in database
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Determine NCCthreshold - Step 3

what values are acceptable for false-positives and
false-negatives?
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Error-Rates

intersection of curves: Equal Error Rate
False- Acceptance-Rate, i.e. False-Positive-Rate
False-Rejection-Rate, i.e. False-Negative-Rate



Introduction Solution Discussion Further Reading

Accuracy of estimated EER/threshold

compute confidence intervals

1 randomly draw n samples out of n correlation coefficients
separately for matching and non-matching coefficients

2 calculate EER and threshold
3 repeat step 1 and 2 a 1000 times
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Accuracy of estimated EER/threshold

the lower and upper bound including 95% of the values
represent the ”confidence-interval”

smaller confidence intervals ⇐⇒ better accuracy
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NCCthreshold - selected image set

decrease EER and increase threshold interval by choosing
images/cameras with per-camera EER of < 1
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NCCthreshold - selected image set

histograms of correlation values of images/cameras with
per-camera EER of < 1
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NCCthreshold - selected image set

resulting confidence interval by choosing images/cameras with
per-camera EER of < 1
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NCCthreshold - values for selected image set

EER EER-CI threshold threshold-CI
1.22 1.14 -1.34 0.0075 0.0068 - 0.0079

EER: equal error rate; CI: confidence interval;
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Several variants...

One problem with our input data was different resolutions.
⇒Work on 5122 pixel segments.

one segment per corner
6 segments in each corner (3 horizontal - 2 vertical) for
total of 24 segments of 5122 pixels

different wavelet (db4 instead of db8)
different noise filter
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NCCthreshold - using Wiener filter

histograms of correlation values by using a Wiener filter
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NCCthreshold - using Wiener filter

EER of about 50%
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Discussion

PRNU seems practicable for several application scenarios
Quality of images to estimate the PRNU has considerable
impact on the achievable error-rates
Determining a threshold depends on application scenario

Outlook
PRNU should be estimated for each color channel
separately
consider eventual transformations on images before
matching to fingerprint
e.g. [Fridrich, 2009] strongly advocates to use Peak to
Correlation Energy measure (PCE) instead of NCC
(still) other block-sizes / block-locations could be
considered
other filters could be used
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Thank you for your attention.

Questions?
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