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Motivation

We can transmit n triangles in 3n time/items.
v1

v2

v3

v4

v5

v6

(v1, v2, v3), (v2, v4, v3), (v4, v5, v3), (v4, v6, v5)

But can we do better?
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Triangle Strips

Yes, we can do better.
Do not specify one triangle at a time, but sequences of
triangles.

v1

v2

v3

v4

v5

v6

(v1, v2, v3, v4, v5, v6)

Cost: 2 + n
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Non-sequential Strips

Not all strips are sequential:
v1

v2

v3

v4

v5

v6

v7

(v1, v2, v3, v4, v5, . . . and now?
(v1, v2, v3, v4, swap, v5, v6, v7), or
(v1, v2, v3, v4,v3, v5, v6, v7).
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Visibility

Sometimes triangle orientation is used for backface culling.
v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

This presents a problem in sequential strips.
Solution: Use swap primitive or zero-area triangle.
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Triangle Fans

Similar construct: Triangle Fan.

v0

v1
v2

v3

v4

v5
v6

v7

(v0, v1, v2, v3, v4, v5, v6, v7)



Introduction Hamiltonian Triangulations Tristrip Decomposition Further Reading

Triangle Fans

Similar construct: Triangle Fan.

v0

v1
v2

v3

v4

v5
v6

v7

(v0,v1,v2, v3, v4, v5, v6, v7)



Introduction Hamiltonian Triangulations Tristrip Decomposition Further Reading

Triangle Fans

Similar construct: Triangle Fan.

v0

v1
v2

v3

v4

v5
v6

v7

(v0, v1,v2,v3, v4, v5, v6, v7)



Introduction Hamiltonian Triangulations Tristrip Decomposition Further Reading

Triangle Fans

Similar construct: Triangle Fan.

v0

v1
v2

v3

v4

v5
v6

v7

(v0, v1, v2,v3,v4, v5, v6, v7)



Introduction Hamiltonian Triangulations Tristrip Decomposition Further Reading

Triangle Fans

Every convex polygon can be turned trivially into a triangle
fan.
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Triangulation of a Polygon

Polygon triangulation is the decomposition of a polygonal
area into a set of triangles [WP].

Many different algorithms to create a triangulation:
Ear-clipping: O(n2)
Convex polygons: O(n)
all simple polygons: O(n) [Chazelle 1991]
non simple polygons: Ω(n logn).
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Dual Graph of a Triangulation

A graph G is said to be the dual graph of a triangulation T
if each vertex of G corresponds to exactly one triangle of
T , and two vertices are connected iff their corresponding
triangles share an edge.
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Hamiltonian Triangulation

Def.: A triangulation is Hamiltonian if its dual graph
contains a Hamiltonian path [Arkin et al., 1994].

not a Hamiltonian
triangulation

a Hamiltonian
triangulation

Not every polygon has a Hamiltonian triangulation.
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Hamiltonian Triangulation

Problem: Does a given simple polygon P have a
Hamiltonian triangulation?
Arkin et al. solve this in O(|visibilitygraph|):

Def.: D[i , j]⇔ subpolygon left of (i , j) has a Hamiltonian
triangulation ending with (i , j).
D[i , i + 2] = (i , i + 2) is a chord of P.
D[i , j] = (D[i , j − 1] and (i , j − 1) visible) or

(D[i + 1, j] and (i + 1, j) visible).
P has a Hamiltonian triangulation if there are i , j with D[i , j]
and D[j , i].

[Arkin et al., 1994]
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Two-Guard-Problem

Walkability:
P is walkable if two guards can walk along different paths
from a point s on the polygon to a point t on the polygon
without losing sight of each other.
P is straight walkable if the guards need not backtrack.
P is discretely straight walkable if at any time only one
guard is walking while the other rests at a vertex.
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Two-Guard-Problem

Easy to see: a discretely straight walkable polygon has a
Hamiltonian triangulation [Arkin et al., 1994].
Walkability, Straight Walkability and Discretely Straight
Walkability can be checked in O(n) time
[Bhattacharya et al., 2001]. Furthermore, Bhattacharya et
al.’s algorithm actually determines all pairs of points of P
which allow ((discrete) straight) walks.
Narasimhan gives a linear time algorithm for constructing a
Hamiltonian triangulation given a vertex pair allowing a
discrete straight walk [Narasimhan 1995].
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Polygons that are not simple

Not so easy for polygons with holes.
The decision problem of whether a given polygon has a
Hamiltonian triangulation is proven to be NP-complete
(reduced from problem of whether a planar, cubic graph is
Hamiltonian) [Arkin et al., 1994].
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Sequential Triangulations

A triangulation is said to be sequential if its turns all
alternate left and right.

v1

v2

v3

v4

v5

v6

a sequential
triangulation not sequential

A triangulation is sequential if its dual graph contains a
Hamiltonian path such that no three triangulation edges
consecutively crossed by the path share a triangulation
vertex [Arkin et al., 1994].
No swap primitive or zero-area triangles needed to encode
the triangulation.
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Sequential Triangulations

Testing if a given triangulation is sequential can be done in
linear time [Arkin et al., 1994].
Generating a sequential triangulation of a simple polygon
can be done in O(n logn) [Flatland 2004].
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Tristrip Decomposition

Not every triangulation can be given as a single strip.
But can we reduce a triangulation to a number k of strips.
Only n + 2 · k vertices need to be transmitted then.
Ideally we would use the smallest possible k .
Unfortunately finding this k and its decomposition is
NP-hard [Estkowski et al., 2002].
Therefore we will concentrate on heuristics.
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Improved SGI Stripping Algorithm

1 Pick a starting triangle.
2 Build three different strips, one for each edge of the

triangle.
3 Prefer triangles that are adjacent to the least number of

neighbors, look ahead in case of ties.
4 Extend these triangle strips in the opposite direction.
5 Choose the longest of these three, discard the others.
6 Repeat until all triangles are covered.

Can be implemented in linear time.

[Real-Time Rendering, 2nd ed., page 460],
[Evans et al., 1996]

3
2

22

2
1

1

1
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Fast and Effective Stripification of Polygonal Surface
Models

Three phases:
1 Compute a spanning tree of the dual graph.
2 Partition the tree into tristrips (path peeling).
3 Concatenation phase: join small strips.

[Xian et al., 1999]
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Efficient Generation of Triangle Strips from
Triangulated Meshes

Def.: a free triangle is a triangle that does not belong to any
strip; the degree of a triangle is the number of free neighbors.

Start with a triangle with the lowest degree.
For picking the next triangle, prefer higher degrees.
Two strategies for tie breaking:

1 Look ahead for triangles with degree 0, or degree 1 with a
free neighbor of degree 1.

2 Favour neighbors that do not require insert of a swap.

Efficient data structures.
Faster than FTSG, fewer strips but more vertices (in the
OpenGL model).

[Kaick et al., 2004]
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Iterative Stripification Algorithm

Works on the dual graph of the triangulation.
Uses a so-called tunnelling operator.

Allows repair of triangulations that are damaged due to
changes in topology (e.g. refinement).

[Porcu, Scateni 2003]
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Thank you for your attention.

Questions?
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