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Abstract

This work presents triangle strips, a useful concept in computer

graphics, and describes existing algorithms in the strongly related cat-

egory of Hamiltonian triangulations and algorithms to create triangle

strips from given triangulations.

1 Introduction

In order to do work on an abstract object, to display it, transform it or oper-

ate on it in other ways, a computer needs a model of that entity, a concrete

representation that describes specific properties of the object. Choosing a

suitable representation is of course a very domain specific problem.

In computer graphics triangles are a common primitive for creating such

models, for instance for approximating a three-dimensional body’s surface

with a set of triangles.

When it is time to display an image of this body, the set of triangles is

loaded and either processed by the computer’s host CPU or sent to the

graphics hardware for processing by specialized hardware. The responsible

unit then works on each vertex and transforms it as needed, clips lines where

necessary, etc.

v1

v2

v3

v4

v5

v6

Figure 1: A simple strip of triangles.

Consider the set of triangles in figure 1 which we may want to transfer

from the host’s main memory to the graphics hardware. A näıve system
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would send four triangles with three vertices each, viz. (v1, v2, v3), (v2, v4, v3),

(v4, v5, v3), and (v4, v6, v5).

1.1 Triangle Strips

One obvious optimization is to not process three vertices per triangle each

but to utilize the fact that often triangles are adjacent and as such share

two vertices.

Looking at the set of triangles from figure 1 once more, it appears that

the list (v1, v2, v3, v4, v5, v6) can also describe these four triangles: The first

three elements of that list specify the first triangle, then elements two, three

and four make up the second triangle, v3, v4, v5 the third and finally the

last three list elements represent the fourth. More generally, such a set of

n triangles can be represented by a list of elements (vi)
n+2
i=1 , where the ith

triangle has vertices vi, vi+1 and vi+2.

Not all groups of triangles can be represented as a sequential triangle strip

however. Consider the five triangles in figure 2. If, as in the previous

example, we simply start at one end and begin listing vertices we would and

produce the list (v1, v2, v3, v4, v5) for the first three triangles. Unfortunately

now we no longer can continue this strip as the final two vertices, v4 and

v5 are not one side of the next triangle. Even if we start differently, with

(v1, v3, v2, . . .) or from the right, we eventually end up in a situation like

this.

v1

v2

v3

v4

v5

v6

v7

Figure 2: Non-sequential triangles.

Apart from simply starting a new strip whenever we get into such a situation
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there are two approaches to handle this kind of triangle set. The first, chosen

for the IRIS GL programming interface by SGI, introduces a special swap

command. This code, as the name suggests, swaps the two most recent

elements in the list. With such a command the triangles in figure 2 can be

strippified as (v1, v2, v3, v4, swap, v5, v6, v7). The second approach, of which

OpenGL is a representative, does not provide a swap-command. Instead

one emulates it by repeating a previous vertex, creating a triangle with an

empty area: (v1, v2, v3, v4,v3, v5, v6, v7).

1.2 Triangle Fans

A construct similar to triangle strips is the triangle fan. In a triangle fan a

single vertex is a point of each triangle.

v0

v1
v2

v3

v4

v5
v6

v7

Figure 3: A triangle fan.

One representation of the fan depicted in figure 3 is (v0, v1, v2, v3, v4, v5, v6, v7).

The vertex v0 is part of all triangles. Together with v1 and v2 it makes up

the first triangle. The second one is built from v0 again, then v2 once more

and the new vertex v3. The third triangle is (v0, v3, v4), then two more until

the last is finally (v0, v6, v7). Like in triangle strips, n+2 vertices are needed

to encode a fan of n triangles.

It should be obvious that every convex polygon can trivially be turned into

both, sequential triangle strips and triangle fans.
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1.3 Visibility

In certain applications the orientation of triangles is used for backface culling.

In such scenarios it is important to not destroy that information when cre-

ating strips from a set of triangles.

In strips the orientation of triangles of course alternates. As such it is a

useful convention that for the purpose of visibility the orientation of the

first triangle shall be the deciding one.

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Figure 4: Two triangle strips: The left strip starts from the left
and is (v1, v2, v3, v4, v5, v6), the right strip starts from the right and is
(v6, v5, v4, v3, v2, v1).

Figure 4 shows two sequential triangle strips. It can be seen that indepen-

dent of starting position (left or right) the first triangle (drawn bold) in these

strips is always oriented counter-clockwise. There is no simple, sequential

strip of these triangles that has a different orientation. If such is wanted

the strip can either be split in two or, maybe the preferable option, a swap

operation can be used. One possible strip of these triangles that starts with

a clockwise triangle is (v1, v3, v2, swap, v4, v5, v6). Again, if swap operations

are not available, they can be simulated using zero-area triangles.
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2 Hamiltonian and Sequential Triangulations

In the previous section we have explained what triangle strips and fans are.

We have so far however assumed that the set of triangles are given already.

This section will briefly introduce triangulations and their dual graph, then

present algorithms for testing whether a given triangulation is Hamiltonian

or even sequential and for producing such triangulations if possible.

2.1 Triangulations

A triangulation of a polygon is a decomposition of its polygonal area into

a set of triangles, such that the triangles do not overlap, do cover the area

of the polygon completely, but nothing more, with the additional constraint

that any vertex of a triangle already be a vertex of the polygon. Figure

5 shows a simple polygon (i.e. one that is not self-intersecting and has no

holes) and one of its triangulations.

Figure 5: A simple polygon and one possible triangulation of its area.

There are a lot of different algorithms to compute a triangulation given a

simple polygon, with a significant spread in computational cost but also in

implementation complexity.

One approach is ear-clipping, described in Polygons have ears [Meisters 1975].

An ear is a three consecutive vertices (v1, v2, v3) of a polygon where v1 and

v3 are visible to each other, i.e. the chord joining these vertices lies entirely

within the polygon. The algorithm continues to identify ears and removes

these from the polygon until only one triangle remains of the original poly-

gon (Meisters shows that there always are at least two non-overlapping ears

in each polygon with more than three vertices). The set of removed ears

together with this final triangle makes up the triangulation. While this al-

gorithm is easy to understand it unfortunately has a runtime complexity of

O(n2) in the number of polygonal vertices.
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For certain sets of simple polygons, like convex polygons, straight forward

linear algorithms exist. Bernard Chazell showed in 1991 that in fact all

simple polygons can be triangulated in linear time [Chazelle 1991]. While

this algorithm is optimal in runtime, it is unfortunately also so complex

that it is considered infeasible to implement [Bhattacharya et al., 2001],

[Held lecture 2010].

For polygons with holes it has been shown that there is a lower bound of

Ω(n log(n) [Computational Geometry, 2nd ed, p. 59].

2.2 Dual Graph of a Triangulation

Each triangulation implicitly defines a corresponding graph, its dual graph.

Introducing this concept allows us to easily re-use definitions and results

from graph theory.

A graph G is said to be the dual graph of a triangulation T if each vertex of

G corresponds to exactly one triangle of T , and two vertices are connected

if and only if their corresponding triangles share an edge.

Figure 6: A triangulation with its dual graph.

Figure 6 shows the same triangulation as previously together with its dual

graph.

2.3 Hamiltonian Triangulation

Graph theory defines a Hamiltonian path as a path that contains each ver-

tex of a graph exactly once [Clark, Holton, 1991, p. 99]. Using that, we

can define a Hamiltonian triangulation as a triangulation whose dual graph

contains a Hamiltonian path [Arkin et al., 1994].

Figure 7 shows two different triangulations of our example polygon. While

the triangulation on the left does not contain a Hamiltonian path, the one

on the right does.
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Figure 7: Two triangulations of the same polygon; one is Hamiltonian, the
other is not.

One could ask if each polygon allows for a Hamiltonian triangulation. Fortu-

nately this question is easily answered, albeit in the negative. Figure 8 shows

a polygon with a unique triangulation which is however not Hamiltonian.

Figure 8: A polygon that is not allowing a Hamiltonian triangulation.

The fact that there are apparently polygons that do admit Hamiltonian

triangulations and polygons that do not creates the decision problem of

whether a given polygon contains such a triangulation.

In 1994 Arkin et alii presented an algorithm that determines if a polygon

has a Hamiltonian triangulation [Arkin et al., 1994]. This algorithm runs

in linear time in the size of the polygon’s visibility graph, so worst case in

O(n2) in the number of polygon vertices.

The authors use a dynamic programming approach, defining a property

D[i, j] as the subpolygon left of the chord (i, j) contains a Hamiltonian tri-

angulation ending with (i, j). Initially all D[i, j] values are computed for

pairs i and j where the difference between i and j equals 2, i.e. they iden-

tify ears. Then they compute more values with ever increasing difference

of i and j. The polygon contains a Hamiltonian triangulation if in the end

there exists a pair i and j such that both D[i, j] and D[j, i].
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2.4 Two Guard Problem

Akin, Held, Mitchell and Skiena’s approach suggests that the question of

whether a polygon allows for a Hamiltonian triangulation is related somehow

to visibility.

s

t

1

2

3

4

5

b

a

x

Figure 9: This polygon allows

for a walk from s to t.

A polygon P is said to be walkable, if two

guards can walk along different paths from

a point s on the polygon to a point t on the

polygon, without ever losing sight of each

other.

Consider the polygon in figure 9. Two

guards, Alice and Bob, starting in s can

reach t without ever losing sight of one an-

other by following for instance these steps:

i) Alice walks to the point labeled a; ii) Bob

walks to 1 and continues on to 2; iii) While

Bob slowly walks from 2 to 3, Alice back-

tracks to b; iv) Bob continues to go to 4 and

further on to 5; v) Alice walks to t; vi) Bob

meets Alice at t.

A stricter version of this property is that of straight walkability. In a straight

walk there is one additional requirement, namely that the guards must not

backtrack. The polygon in figure 9 is also straight walkable, however not

from s to t. The walk has to either start or end in the wedge on the right

hand side (between, including, 1 and 4) with the opposite end-point being

somewhere in the bottom part between x and 5.

An even more restrictive version is discrete straight walkability. A walk is

discrete if at any time only one guard is moving while the other rests at a

vertex. The polygon from figure 9 is discretely straight walkable as well.

2.5 Creating Hamiltonian Triangulations

Arkin et alii note that it is easy to see that every discretely straight walkable

polygon has a Hamiltonian triangulation. Starting with all the edges of the

polygon in a set T , both guards begin their discrete straight walk along the

polygonal edge. Whenever a guard reaches a vertex the line between the
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two guards gets added to T . Once both two guards meet at the opposite

side, T will be the triangulation of the polygon.

In 2001, Bhattacharya, Mukhopadhyay and Narasimhan presented an al-

gorithm that determines if a polygon is walkable, straight walkable and

discretely straight walkable, each in optimal, linear time. Furthermore

their method not only answers the decision problem, it even determines all

pairs of points of a polygon that allow for a particular walkability property

[Bhattacharya et al., 2001].

An earlier work by Narasimhan described a linear time algorithm for con-

structing a Hamiltonian triangulation when given a vertex pair allowing a

discrete straight walk [Narasimhan 1995]. Combining these two results al-

lows for creating a Hamiltonian triangulation of a polygon in linear time if

such a triangulation exists.

Unfortunately these algorithms work only for simple polygons. Arkin and

her colleagues showed in [Arkin et al., 1994] that for polygons with holes

the decision problem is NP-complete. They did this by reducing from the

known to be NP-complete problem of determining whether a planar, cubic

graph is Hamiltonian.

2.6 Sequential Hamiltonian Triangulations

A subset of Hamiltonian triangulations is also sequential. Ostensively, a

sequence of triangles is sequential if it takes alternating left and right turns.

Arkin et alii define a triangulation as sequential if the dual graph contains

a Hamiltonian path such that no three triangulation edges consecutively

crossed by the path share a vertex. Figure 10 shows both a sequential and

a non-sequential triangulation. Note how in the non-sequential image the

path crosses more than two, five in fact, lines that share the vertex v.

v1

v2

v3

v4

v5

v6

v

Figure 10: Sequential and non-sequential triangulations.

The advantage of sequential lists of triangles is that their representation as
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a strip will not require the use of any swap commands or zero-area triangles.

Akin, Held, Mitchell and Skiena note that it can be determined in lin-

ear time whether a given triangulation is a sequential Hamiltonian one

[Arkin et al., 1994]. The main observation is that in any such triangula-

tion a triangle can be present in only one of six ways (three possible “entry”

edges, each case with two “exit” edges), and that from that the entire strip

follows. The approach is then to simply pick an arbitrary triangle and try

to extend strips in both directions for all six cases. Then check if for any

of these six strips the strip covers all triangles before it either ends or self-

intersects. With appropriate data structures this can be determined using

only linear time and space, both in the size of the triangulation (and thus

also linear in the number of polygon points).

Robin Flatland described an algorithm for actually creating a sequential

triangulation of a simple polygon in [Flatland 2004]. The algorithm deter-

mines all points that allow sequential walks (i.e. discrete straight walks with

the additional constraint that a guard can move only to the immediate next

vertex before the other guard has to make their move). It is trivial to create

a sequential triangulation from a point that permits a sequential walk.

s

Scw(s)

Sccw(s)

x

Figure 11: The reflex vertex s rules out sequential walks starting in the
highlighted regions.

She starts with labeling all vertices as potentially allowing a (right and left)

sequential walk, and then goes on to rule out specific vertices. She notes

that a reflex vertex (s in the illustration in figure 11) can never be the

starting point for a sequential walk as the two guards would lose sight of

each other after both had made a step each. Even more, a reflex vertex rules

out half the nodes between itself and the point where rays shot from s hit

the polygon on the other side – if both guards started in x for instance (with
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x being closer to s than to Scw(s)) then eventually the right guard would

become hidden behind s before the left one passes Scw(s). She also argues

that the opposite side of a reflex vertex s cannot be the starting point of a

sequential walk either, since the guards would not see each other at the end

of their journey when they get near to s.

Her algorithm runs in overall O(n log(n)) time. This complexity is dom-

inated by the need to do one ray shooting (in logarithmic time) for each

reflex vertex. The number of such vertices can be linear in the number of

total vertices.



3 TRISTRIP DECOMPOSITION 13

3 Tristrip Decomposition

Not every triangle mesh can be encoded as a single triangle strip. This

is quite easy to see since every polygon has a triangulation but not every

polygon has a Hamiltonian triangulation as discussed in the previous section.

But even when a given set of triangles cannot be represented by one strip

there is something to be gained by representing it by a small number of

strips. If a mesh of n triangles can be partitioned into k strips then instead of

3·n vertices only n+2·k vertices need to be stored, transmitted, transformed

and/or otherwise processed by graphics hardware.

Unfortunately finding the smallest possible such k has been shown to be

NP-hard [Estkowski et al., 2002] which is why much existing research has

been about finding reasonably good approximations fast.

In this section we will briefly present a small selection of these heuristics.

3.1 SGI Stripping Algorithm

One of the earliest algorithms for this problem is the SGI Stripping Algo-

rithm, described in [RTR, p. 460] and in some more detail in [Evans et al., 1996].

SGI’s approach is a greedy algorithm, i.e. one that always picks what ap-

pears to be the best choice locally without respect to any global concerns.

The algorithm works as follows:

1. Pick a starting triangle.

2. Build three different strips, one for each edge of the triangle.

3. Extend these triangle strips in the opposite direction.

4. Choose the longest of these three, discard the others.

5. Repeat until all triangles are covered.

In step 1 the algorithm has to pick a triangle from the set of all triangles

to start a new strip. The original algorithm preferably picks triangles with

low degrees (few neighbors), but it has been argued that picking random

triangles does not hurt significantly (Chow as cited in [RTR]).

Once a starting triangle has been selected, the algorithm tries to build strips

starting on each of the three sides of the triangle (step 2). When extending a

strip and there is a choice between two neighbors to extend to, the algorithm

again prefers triangles with a lower degree. In the case of a tie the algorithm
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looks ahead one step and if there is still a tie makes an arbitrary decision.

The preference of lower-degree triangles minimizes the chances of isolated

triangles being left over at the end that cannot be joined to any strips.

All three strips are then extended in step 3 to their opposite direction as

well, making sure that each strip is as long as possible before selecting the

longest of three in step 4 and discarding the others.

When no more triangles are left that aren’t already part of a strip the

algorithm terminates.

3
2

22

2
1

1

1

Figure 12: Tie breaking in the SGI stripping algorithm.

Figure 12 illustrates the selection and tie-breaking step. A strip that already

consists of the top two triangles and gets extended to the triangle with degree

three now has two potential paths to follow, both leading to a triangle of

degree two. The next successor after the immediate neighbors on the left has

a degree of 1 whereas on the right it has a degree of two, so the algorithm

decides to continue the strip to the left side.

SGI’s algorithm has no preference whatsoever for sequential strips over non-

sequential strips. SGI’s Iris GL support swap operations natively, so this

seems understandable but it is a concern when using the method on other

systems.

When using appropriate data structures this algorithm can be implemented

to use linear time. The use of hash tables for storing adjacency information

and the use of a priority queue to keep a list of good next starting positions

has been suggested.
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3.2 Fast and Effective Stripification of Polygonal Surface

Models

The approach chosen by Xian, Held and Mitchell for their FTSG is quite

different. It takes a global approach instead of being greedy. It operates in

three main phases, viz. (1) computing a spanning tree in the triangulation’s

dual graph, (2) partitioning that tree into strips and (3) joining small scripts

together to form longer chains.

If the input to FTSG is not already a complete triangulation but also contains

non-triangle faces, the algorithm first triangulates those. Once only triangles

are present the dual graph is computed and a spanning tree constructed

using a hybrid between depth-first and breadth-first search. The hybrid

approach chosen starts like depth-first, trying to build a long path. When

that terminates, instead of backtracking along the path to find a position

at which to fork off a new chain, the algorithm starts as close to the root

as possible for the next path. This method’s goal is to have fewer but long

chains in the spanning tree, reducing the number of forks and thus eventually

the number of different triangle strips needed.

Once the spanning tree has been constructed, the author’s bottom-up Path

Peeling Algorithm partitions the tree into distinct paths in phase 2 while

guaranteeing that each (with the possible exception of one) path consists of

at least three triangles. This was done since graphics hardware would only

be able to profit from paths if they had at least things lengths; in shorter

chains the set-up cost dominated any potential savings.

In the final phase each strip is greedily decomposed into either sequential

strips or triangle fans.

The authors note that their algorithm runs in linear time, except for the

triangulation step that may be required if non-triangle faces are present.

They however also state that the triangulation step also usually runs in

linear time in practice.

3.3 Efficient Generation of Triangle Strips from Triangulated

Meshes

A newer greedy algorithm was published in 2004 by Kaick et alii [Kaick et al., 2004].

This algorithm appears to be quite similar to SGI’s Stripping algorithm de-
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scribed in 3.1 above. The authors use a different strategy for picking the

next triangle when building strips, preferring neighbors with a higher adja-

cency degree where SGI’s method preferred lower degrees. Their algorithm

provides for two different tie breaking methods, one that sometimes allows

for immediate inserts, cutting short further consideration, and one that tries

to minimize required swap operations.

The authors also describes the data structures used to some detail and they

appear to be remarkably simple.

According to the paper, their algorithm usually is a bit fast than FTSG, while

creating comparable results.

3.4 Iterative Stripification Algorithm

This approach by Porcu and Scateni is a representative of iterative stripping

algorithms [Porcu, Scateni 2003].

The algorithm works, as others do, on the dual graph of the triangle mesh.

Remember that a graph edge in the dual graph represents two triangles

from the mesh sharing an edge, i.e. being adjacent to one another. The

algorithm defines a coloring of graph edges as follows: An edge representing

two triangles that are consecutive in a strip is drawn solid while an edge that

represents triangles that are not neighbors in an existing strip are painted

dashed.

It also defines a so-called tunneling operator. This operator works on paths,

tunnels, of the dual graph that meet certain requirements. The path has to

consist of alternatingly dashed and solid edges, with the first and last edge

always being dashed. The end points also have to terminate in a vertex

that is itself the terminal of an existing triangle strip, i.e. at most one of the

edges in that vertex is solid – if no solid edge is present at that vertex then

that vertex is considered the terminal of a one-triangle strip.

When the tunneling operator gets applied to a tunnel it flips the coloring of

each edge of the tunnel. From the requirements listed above it follows that

each tunnel is of odd length with one more dashed edge than solid edges.

After the operation this property is reversed and there is now one more solid

edge in the graph, thus improving the stripification. Care must be taken not

to create any loops with this operation and significant effort is expended on

this.
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Figure 13: The tunneling operator improves a stripification.

Figure 13 shows the workings of the tunnel operator. Highlighted in red is

the tunnel that is being operated upon. In the top line a tunnel of length

one connects two short strips, reducing the total number of strips in that

graph to two. Applied on the same graph once more in the bottom line it

connects the two remaining strips into a single, long triangle strip covering

the entire mesh.
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4 Conclusion

Section 1 introduced the concepts of triangle fans, triangle strips and se-

quential triangle strips.

In section 2 we briefly covered triangulations and triangulation’s dual graph,

related the connection between walkability and Hamiltonian triangulations,

and presented existing work on sequential triangulations.

We finished showing different approaches on how to decompose triangle

meshes into a small number of strips in section 3.

Unfortunately there has been no opportunity to explore algorithms that are

able to exploit larger vertex caches.
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