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Casting Problem

Question: Given a polyhedral object P, can we produce it
by casting it from a single mold and then remove it by
translations.

Necessary condition: P can be removed in direction ~d if ~d
makes an angle greater than 90◦ with the outside normal
of all ordinary faces.
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Casting Problem, cont’d

How do we find ~d , if it even exists?
We will see an O(n) expected runtime algorithm that gives
us a ~d , given a fixed top face.

This results in an O(n2) algorithm overall if we have to try
different faces for the top face.
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Half-Plane Intersection

Constraints: H = h1,h2, . . . ,hn of the form

hi : aix + biy ≤ ci

hi =̂ closed half-plane in R2

hi =̂ set of possible ~d for each face fi of P.
Goal: Find all points in the common intersection.
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Divide & Conquer

1: procedure INTERSECTHALFPLANES(H)
2: if |H| = 1 then
3: return unique h ∈ H
4: else
5: split H into H1, H2
6: C1 ← IntersectHalfPlanes(H1)
7: C2 ← IntersectHalfPlanes(H2)
8: C ← IntersectConvexRegions(C1, C2)
9: return C

10: end if
11: end procedure
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Divide & Conquer, Complexity

Intersecting Convex Regions can be done in linear time.
Thus:

T (N) =

{
O(1) if n = 1.
O(n) + 2T (n/2) if n > 1.

This solves to:
T (n) = O(n log n)
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Incremental Approach – Linear Programming

Linear Programming:
Maximize c1x1 + c2x2 + . . . + cdxd

Subject to:

a1,1x1 + . . . + a1,dxd ≤ b1

a2,1x1 + . . . + a2,dxd ≤ b2

...
an,1x1 + . . . + an,dxd ≤ bn
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Incremental Approach – Linear Programming

Linear Programming:
Maximize: cxpx + cypy

Subject to:

a1,xpx + a1,ypy ≤ b1

a2,xpx + a2,ypy ≤ b2

...
an,xpx + an,ypy ≤ bn
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Linear Programming

Possible results from LP:
(i) Problem is infeasible.
(ii) Feasible region is unbounded in direction of ~c.
(iii) Feasible region is bounded by an edge e normal to ~c.
(iv) There is a unique solution.

We would like to avoid (ii) so we add additional constraints:
m1, m2 with: m1 := |px | ≤ M,m2 := |py | ≤ M.
To avoid (iii) we establish a convention: When there are
several optimal points, pick the lexicographically smallest
one.
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Incremental Approach, cont’d

Let
Hi := {m1,m2,h1,h2, . . . ,hi}
Ci := m1 ∩m2 ∩ h1 ∩ h2 ∩ . . . ∩ hi

Observe:
Ci has a unique optimal vertex, vi that maximizes vi · ~c.
C0 ⊇ C1 ⊇ C2 ⊇ . . . ⊇ Cn = C
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Incremental Approach: Step

Have vi .
Step i −→ i + 1
If vi ∈ hi+1: vi+1 = vi

If vi 6∈ hi+1:
Ci+1 = ∅, or
vi+1 ∈ `i+1 where `i+1 is the line bounding hi+1.
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Incremental Algorithm

1: procedure 2DBOUNDEDLP(H)
2: v0 ← corner of C0 = {m1,m2}
3: for i ← 0 . . . n − 1 do
4: if vi ∈ hi+1 then
5: vi+1 ← vi
6: else
7: vi+1 ← point p on `i+1 that

maximizes ~c · p subject to Hi
8: if vi+1 = NULL then
9: return NULL

10: end if
11: end if
12: end for
13: return vn
14: end procedure
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Incremental Approach: Complexity

Finding that p on ` can be done in linear time.

Worst case: we have to do that every step of the way
Therefore: Needs O(n · n) = O(n2) time.
That’s not quite the linear time algorithm we were
promised. . .
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Randomized Algorithm

1: procedure 2DRANDOMIZEDBOUNDEDLP(H)
2: v0 ← corner of C0 = {m1,m2}
3: H ← randomPermutation(H)
4: for do i ← 0 . . . n − 1
5: if vi ∈ hi+1 then
6: vi+1 ← vi
7: else
8: vi+1 ← point p on `i+1 that

maximizes ~c · p subject to Hi
9: if vi+1 = NULL then

10: return NULL

11: end if
12: end if
13: end for
14: return vn
15: end procedure
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Analysis

Let Xi =

{
0 if vi stays the same.
1 if vi needs updating.

Then, total cost T =
∑n

i=1O(i) · Xi

T = E [
∑n

i=1O(i) · Xi ] =
∑n

i=1O(i) · E [Xi ]
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Backwards Analysis

T =
∑n

i=1O(i) · E [Xi ]

But what is E [Xi ]?

Look at a specific fixed point in the algorithm
What are the chances we have just updated vi?
We updated vi if vi is not on an extreme vertex of Ci−1, that
is, hi is one of the half planes that define vi .
Half planes are sorted randomly, so the probability is at
most 2

i .

E [Xi ] ≤ 2
i .

T ≤
∑n

i=1O(i) · 2
i ∈ O(n), expected.
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Casting Problem

Summary:
Have O(n) expected algorithm that tells us if a polyhedron
P with a given top face can be removed from the mold.
Therefore have O(n2) algorithm to determine if P can be
cast at all.
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Smallest Enclosing Disk

Problem: Given a set of points in the plane, find the
smallest disk that covers all of them.

Naive approaches do not perform very well.
Given the Farthest point Voronoi Diagram, can be solved in
O(n) time.[SH75]
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Farthest Point Voronoi Diagram
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Incremental Algorithm

Set of Points P := {p1,p2, . . . ,pn}
Pi := {p1, . . . ,pi}
Di :=smallest disk enclosing Pi

Incremental Step:
Observation:

(i) if pi ∈ Di−1 then Di = Di−1

(ii) if pi 6∈ Di−1 then pi lies on ∂Di
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Smallest Enclosing Disk

1: procedure MINIDISK(P)
2: P ← randomPermutation(P)
3: D2 ← smallest disk of {p1,p2}.
4: for i ← 3 . . . n do
5: if pi ∈ Di−1 then
6: Di ← Di−1
7: else
8: Di ← DiskWithPoint({p1, . . . ,pi−1},pi)
9: end if

10: end for
11: return Dn
12: end procedure
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Smallest Enclosing Disk, cont’d

1: procedure DISKWITHPOINT(P, q)
2: P ← randomPermutation(P)
3: D1 ← smallest enclosing disk for {p1,q}.
4: for j ← 2 . . . n do
5: if pj ∈ Dj−1 then
6: Dj ← Dj−1
7: else
8: Dj ← DiskWith2Points({p1, . . . ,pj−1},pj ,q)
9: end if

10: end for
11: return Dn
12: end procedure
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Smallest Enclosing Disk, cont’d

1: procedure DISKWITH2POINTS(P, q1, q2)
2: D0 ← smallest disk with {q1,q2} on the boundary.
3: for k ← 1 . . . n do
4: if pk ∈ Dk−1 then
5: Dk ← Dk−1
6: else
7: Dk ← disk with {q1,q2,pk} on the boundary.
8: end if
9: end for

10: return Dn
11: end procedure



Casting Problem Smallest Enclosing Disk Point Location Delaunay Triangulations

Correctness

P a set of points
R a possibly empty set of points
P ∩ R = ∅.
p ∈ P

(i) If there is a disk that encloses P and has R on its
boundary, then the smallest such disk is unique. We
denote it by md(P,R).

(ii) If p ∈ md(P \ {p},R), then md(P,R) = md(P \ {p},R)

(iii) If p 6∈ md(P \ {p},R), then
md(P,R) = md(P \ {p},R ∪ {p})
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Complexity

DiskWith2Points() runs in linear time.
Ignoring calls to DiskWith2Points(),
DiskWithPoint() also runs in linear time. What are the
chances we call DiskWith2Points()?

The probability of having to call it is bounded by 2
i .

Thus, DiskWithPoint() runs in time
O(n) +

∑n
i=2O(i) · 2

i ∈ O(n), expected.
Using the same argument, we can see that MiniDisk
runs also ins O(n) expected time.
Linear space complexity.
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Summary

We have seen an easy to implement algorithm to find the
smallest enclosing disk for a set of points in the plane.
The algorithm runs in expected linear time and linear
storage.
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Point location

Problem: Given a partition of R2 and a query point q, find
the face that q is in.
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Point location

Plethora of Algorithms:
Slab Method
Chain Method
Triangulation Refinement
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Trapezoidal Maps
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Trapezoidal Maps, cont’d

Each face ∆ has
up to two vertical edges.
exactly two non-vertical edges, bottom(∆) and top(∆).
a unique vertex that defines its left vertical edge, leftp(∆).
a unique vertex that defines its right vertical edge,
rightp(∆).
up to four neighbors (two to the left, two to the right) - we
do not count those above or below.
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Search Trees
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Incremental Randomized Algorithm

Basic Idea: Given a set S of line segments, construct the
trapezoidal map T (S) incrementally, while at the same time
also constructing the search structure D(T (S)).
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Incremental Randomized Algorithm, cont’d

1: procedure TRAPEZOIDALMAP(S)
2: Find bounding box R.
3: Initialize T and D for R.
4: Shuffle S.
5: for i ← 1 . . . n do
6: Find the set ∆0,∆1, . . . ,∆k of trapezoids in T that intersect si .
7: Remove these trapezoids from T and replace them with new trapezoids

that appear due to the intersection with si .
8: Remove the leaves for ∆0, . . . ,∆k from D and create new ones for the

new trapezoids. Link them to the search tree appropriately by adding new inner
nodes.

9: end for
10: return (T ,D).
11: end procedure
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Analysis

Correctness: Follows from construction, in particular the
loop invariants.
Search Complexity: depends on the depth of the search
structure.

Depth of D increases by at most 3 every iteration.
Therefore the query time is bounded by 3n.
Consider a fixed search path for q in D. Let Xi be a random
variable denoting the number of nodes added on that path
in iteration i .
So the search path has length E [

∑n
i=1 Xi ] =

∑n
i=1 E [Xi ].

Let Pi be the probability that we added a node in iteration i .
E [Xi ] ≤ 3Pi .
What is Pi?

So the total length is 12
∑n

i=1
1
i ∈ O(log n) expected.
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Analysis

Correctness: Follows from construction, in particular the
loop invariants.
Search Complexity: depends on the depth of the search
structure.

Depth of D increases by at most 3 every iteration.
Therefore the query time is bounded by 3n.
Consider a fixed search path for q in D. Let Xi be a random
variable denoting the number of nodes added on that path
in iteration i .
So the search path has length E [

∑n
i=1 Xi ] =

∑n
i=1 E [Xi ].

Let Pi be the probability that we added a node in iteration i .
E [Xi ] ≤ 3Pi .
Pi = Pr [∆q(Si ) 6= ∆q(Si−1)] = Pr [∆q(Si ) 6∈ T (Si−1)] ≤ 4

i .

So the total length is 12
∑n

i=1
1
i ∈ O(log n) expected.
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Analysis

Similarly, it can be shown that the size of D is O(n)
expected, and
that the running time of TrapezoidalMap is O(n log n)
expected.
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Summary

We have seen an algorithm that given a set S of n line
segments builds a trapezoidal map and a search structure in
O(n log n) expected time and O(n) expected space. These
structures support point location queries in O(log n) expected
time.
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Delaunay Triangulation

Definition: Let P be a set of points in the plane, and let T
be a triangulation of P. Then T is a Delauney Triangulation
if the circumcircle of any triangle of T does not contain a
point of P in its interior.
Dual Graph of the point Voronoi diagram.
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Legal and Illegal Edges

T is a Delauney Triangulation if it has no illegal edges.
Every triangulation can be transformed into a DT by
continuously flipping illegal edges.
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Incremental Algorithm

1: procedure DELAUNEYTRIANGULATION(P)
2: Let p0 be a point on CH(P).
3: Create p−1, p−2 so that p0,p−1,p−2 are a bounding ∆.
4: Randomly permute p2, . . . pn.
5: Initialize T with ∆ p0,p−1,p−2.
6: for i ← 2 . . . n do
7: Find ∆ that contains pi .
8: Split triangles.
9: Legalize affected edges.

10: end for
11: Discard p−1, p−2 and all incident edges.
12: return T
13: end procedure
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Analysis

The expected number of total triangles created is bounded by
1 + 9n.

In iteration r we insert pr and get Tr .
For every triangle created during the “split triangles” step,
we create one edge incident at pr . During the “legalize
edges” step we add one incident edge for every two
triangles created.
If the degree of pr after insertion is k , we have created at
most 2k − 3 triangles. What is this k?

pr is just a random element of Pr . Tr has at most
3(r + 3)− 6) edges. Therefore,

∑r
i=1 deg(pi) ≤ 6r .

It follows that
E [number of triangles created in step r ] ≤ 2 · 6− 3 = 9



Casting Problem Smallest Enclosing Disk Point Location Delaunay Triangulations

Analysis

The expected number of total triangles created is bounded by
1 + 9n.

In iteration r we insert pr and get Tr .
For every triangle created during the “split triangles” step,
we create one edge incident at pr . During the “legalize
edges” step we add one incident edge for every two
triangles created.
If the degree of pr after insertion is k , we have created at
most 2k − 3 triangles. What is this k?
pr is just a random element of Pr . Tr has at most
3(r + 3)− 6) edges. Therefore,

∑r
i=1 deg(pi) ≤ 6r .

It follows that
E [number of triangles created in step r ] ≤ 2 · 6− 3 = 9



Casting Problem Smallest Enclosing Disk Point Location Delaunay Triangulations

Analysis, cont’d

To support the point location queries, we create a search
structure D. This will have a node for every triangle
created. Thus expected space is in O(n).
Expected running time - ignoring point location - is
proportional to the number of triangles created. Therefore
– ignoring point location – expected running time is in O(n)
as well.

Point location dominates this however. Amortized over the
entire run it requires O(n log n) [omitted].
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Summary

We have seem a randomized incremental algorithm to
construct a Delauney Triangulation. It runs in O(n log n)
expected time and requires linear expected space.
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Thank you for your attention.

Questions?
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