Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Randomized Algorithms in Computational Geometry

Peter Palfrader

July 2013

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Outline

2 Smallest Enclosing Disk

3 Point Location

4 Delaunay Triangulations

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Casting Problem

• Question: Given a polyhedral object \mathcal{P} , can we produce it by casting it from a single mold and then remove it by translations.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Casting Problem

- Question: Given a polyhedral object *P*, can we produce it by casting it from a single mold and then remove it by translations.
- Necessary condition: \mathcal{P} can be removed in direction \vec{d} if \vec{d} makes an angle greater than 90° with the outside normal of all ordinary faces.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Casting Problem, cont'd

How do we find \vec{d} , if it even exists?

 We will see an O(n) expected runtime algorithm that gives us a d
 , given a fixed top face.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Casting Problem, cont'd

How do we find \vec{d} , if it even exists?

- We will see an O(n) expected runtime algorithm that gives us a d
 , given a fixed top face.
- This results in an $\mathcal{O}(n^2)$ algorithm overall if we have to try different faces for the top face.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Half-Plane Intersection

• Constraints: $H = h_1, h_2, \ldots, h_n$ of the form

$$h_i: a_i x + b_i y \leq c_i$$

- $h_i \cong$ closed half-plane in \mathbb{R}^2
- $h_i \cong$ set of possible \vec{d} for each face f_i of \mathcal{P} .
- Goal: Find all points in the common intersection.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Divide & Conquer

- 1: **procedure** INTERSECTHALFPLANES(H)
- 2: **if** |H| = 1 **then**
- 3: return unique $h \in H$

4: **else**

- 5: split H into H_1 , H_2
- 6: $C_1 \leftarrow \text{IntersectHalfPlanes}(H_1)$
- 7: $C_2 \leftarrow \text{IntersectHalfPlanes}(H_2)$
- 8: $C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)$
- 9: return *C*
- 10: **end if**
- 11: end procedure

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Divide & Conquer, Complexity

- Intersecting Convex Regions can be done in linear time.
- Thus:

$$T(N) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1.\\ \mathcal{O}(n) + 2T(n/2) & \text{if } n > 1. \end{cases}$$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

(ロ) (同) (三) (三) (三) (○) (○)

Divide & Conquer, Complexity

- Intersecting Convex Regions can be done in linear time.
- Thus: $T(N) = \begin{cases} \mathcal{O}(1) & \text{if } n = 1. \\ \mathcal{O}(n) + 2T(n/2) & \text{if } n > 1. \end{cases}$
- This solves to:

 $T(n) = \mathcal{O}(n \log n)$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Incremental Approach – Linear Programming

Linear Programming:

- Maximize $c_1 x_1 + c_2 x_2 + ... + c_d x_d$
- Subject to:

$$a_{1,1}x_1 + \dots + a_{1,d}x_d \leq b_1$$

$$a_{2,1}x_1 + \dots + a_{2,d}x_d \leq b_2$$

$$\vdots$$

$$a_{n,1}x_1 + \dots + a_{n,d}x_d \leq b_n$$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Incremental Approach – Linear Programming

Linear Programming:

- Maximize: $c_x p_x + c_y p_y$
- Subject to:

$$a_{1,x}p_x + a_{1,y}p_y \leq b_1$$

$$a_{2,x}p_x + a_{2,y}p_y \leq b_2$$

$$\vdots$$

$$a_{n,x}p_x + a_{n,y}p_y \leq b_n$$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Linear Programming

Possible results from LP:

- (i) Problem is *infeasible*.
- (ii) Feasible region is unbounded in direction of \vec{c} .
- (iii) Feasible region is bounded by an edge e normal to \vec{c} .
- (iv) There is a unique solution.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Linear Programming

Possible results from LP:

- (i) Problem is infeasible.
- (ii) Feasible region is unbounded in direction of \vec{c} .
- (iii) Feasible region is bounded by an edge e normal to \vec{c} .
- (iv) There is a unique solution.
- We would like to avoid (ii) so we add additional constraints: m_1, m_2 with: $m_1 := |p_x| \le M, m_2 := |p_y| \le M$.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linear Programming

Possible results from LP:

- (i) Problem is infeasible.
- (ii) Feasible region is unbounded in direction of \vec{c} .
- (iii) Feasible region is bounded by an edge e normal to \vec{c} .
- (iv) There is a unique solution.
- We would like to avoid (ii) so we add additional constraints: m_1, m_2 with: $m_1 := |p_x| \le M, m_2 := |p_y| \le M$.
- To avoid (iii) we establish a convention: When there are several optimal points, pick the lexicographically smallest one.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Incremental Approach, cont'd

Let

•
$$H_i := \{m_1, m_2, h_1, h_2, \dots, h_i\}$$

• $C_i := m_1 \cap m_2 \cap h_1 \cap h_2 \cap \dots \cap h_i$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Incremental Approach, cont'd

Let

- $H_i := \{m_1, m_2, h_1, h_2, \dots, h_i\}$
- $C_i := m_1 \cap m_2 \cap h_1 \cap h_2 \cap \ldots \cap h_i$

Observe:

• C_i has a unique optimal vertex, v_i that maximizes $v_i \cdot \vec{c}$.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Incremental Approach, cont'd

Let

- $H_i := \{m_1, m_2, h_1, h_2, \dots, h_i\}$
- $C_i := m_1 \cap m_2 \cap h_1 \cap h_2 \cap \ldots \cap h_i$

Observe:

- C_i has a unique optimal vertex, v_i that maximizes $v_i \cdot \vec{c}$.
- $C_0 \supseteq C_1 \supseteq C_2 \supseteq \ldots \supseteq C_n = C$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Incremental Approach: Step

- Have v_i.
- Step $i \longrightarrow i + 1$
- If $v_i \in h_{i+1}$: $v_{i+1} = v_i$
- If $v_i \notin h_{i+1}$:
 - $C_{i+1} = \emptyset$, or
 - $v_{i+1} \in \ell_{i+1}$ where ℓ_{i+1} is the line bounding h_{i+1} .

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Incremental Algorithm

1: procedure 2DBOUNDEDLP(H)	
2:	$v_0 \leftarrow ext{corner of } C_0 = \{m_1, m_2\}$
3:	for $i \leftarrow 0 \dots n-1$ do
4:	if $v_i \in h_{i+1}$ then
5:	$v_{i+1} \leftarrow v_i$
6:	else
7:	$v_{i+1} \leftarrow \text{point } p \text{ on } \ell_{i+1} \text{ that}$
	maximizes $\vec{c} \cdot p$ subject to H_i
8:	if $v_{i+1} = \text{NULL}$ then
9:	return NULL
10:	end if
11:	end if
12:	end for
13:	return v _n
14: end procedure	
	- ・ ロ ・ < 雪 ・ < 重 ・ のへの

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Incremental Approach: Complexity

• Finding that p on ℓ can be done in linear time.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Incremental Approach: Complexity

- Finding that p on ℓ can be done in linear time.
- Worst case: we have to do that every step of the way
- Therefore: Needs $\mathcal{O}(n \cdot n) = \mathcal{O}(n^2)$ time.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Incremental Approach: Complexity

- Finding that p on ℓ can be done in linear time.
- Worst case: we have to do that every step of the way
- Therefore: Needs $\mathcal{O}(n \cdot n) = \mathcal{O}(n^2)$ time.
- That's not quite the linear time algorithm we were promised...

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Incremental Algorithm

1: procedure 2DBOUNDEDLP(H) $v_0 \leftarrow \text{corner of } C_0 = \{m_1, m_2\}$ 2: for do $i \leftarrow 0 \dots n-1$ 4: if $v_i \in h_{i+1}$ then 5: 6: $V_{i+1} \leftarrow V_i$ else 7: 8: $v_{i+1} \leftarrow \text{point } p \text{ on } \ell_{i+1} \text{ that}$ maximizes $\vec{c} \cdot p$ subject to H_i if $v_{i+1} = \text{NULL}$ then 9: 10: return NULL end if 11: end if 12: end for 13: return v_n 14: 15: end procedure ◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Randomized Algorithm

1: procedure 2DRANDOMIZEDBOUNDEDLP(H) $v_0 \leftarrow \text{corner of } C_0 = \{m_1, m_2\}$ 2: 3: $H \leftarrow \text{randomPermutation}(H)$ for do $i \leftarrow 0 \dots n-1$ 4: if $v_i \in h_{i+1}$ then 5: 6: $V_{i+1} \leftarrow V_i$ 7: else 8: $v_{i+1} \leftarrow \text{point } p \text{ on } \ell_{i+1} \text{ that}$ maximizes $\vec{c} \cdot p$ subject to H_i if $v_{i+1} = \text{NULL}$ then 9: 10: return NULL end if 11: end if 12: end for 13: 14: return v_n 15: end procedure (日) (日) (日) (日) (日) (日) (日)

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Analysis

• Let
$$X_i = \begin{cases} 0 & \text{if } v_i \text{ stays the same.} \\ 1 & \text{if } v_i \text{ needs updating.} \end{cases}$$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Analysis

• Let
$$X_i = \begin{cases} 0 & \text{if } v_i \text{ stays the same.} \\ 1 & \text{if } v_i \text{ needs updating.} \end{cases}$$

• Then, total cost
$$T = \sum_{i=1}^{n} \mathcal{O}(i) \cdot X_i$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Analysis

• Let
$$X_i = \begin{cases} 0 & \text{if } v_i \text{ stays the same.} \\ 1 & \text{if } v_i \text{ needs updating.} \end{cases}$$

• Then, total cost $T = \sum_{i=1}^n \mathcal{O}(i) \cdot X_i$
• $T = E[\sum_{i=1}^n \mathcal{O}(i) \cdot X_i] = \sum_{i=1}^n \mathcal{O}(i) \cdot E[X_i]$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Backwards Analysis

•
$$T = \sum_{i=1}^{n} \mathcal{O}(i) \cdot E[X_i]$$

• But what is $E[X_i]$?

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Backwards Analysis

- $T = \sum_{i=1}^{n} \mathcal{O}(i) \cdot E[X_i]$
- But what is E[X_i]?
- Look at a specific fixed point in the algorithm
- What are the chances we have just updated v_i?

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Backwards Analysis

- $T = \sum_{i=1}^{n} \mathcal{O}(i) \cdot E[X_i]$
- But what is E[X_i]?
- Look at a specific fixed point in the algorithm
- What are the chances we have just updated *v_i*?
- We updated v_i if v_i is not on an extreme vertex of C_{i-1}, that is, h_i is one of the half planes that define v_i.
- Half planes are sorted randomly, so the probability is at most ²/_i.

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Backwards Analysis

- $T = \sum_{i=1}^{n} \mathcal{O}(i) \cdot E[X_i]$
- But what is E[X_i]?
- Look at a specific fixed point in the algorithm
- What are the chances we have just updated v_i?
- We updated v_i if v_i is not on an extreme vertex of C_{i-1}, that is, h_i is one of the half planes that define v_i.
- Half planes are sorted randomly, so the probability is at most ²/_i.
- $E[X_i] \leq \frac{2}{i}$.
- $T \leq \sum_{i=1}^{n} \mathcal{O}(i) \cdot \frac{2}{i} \in \mathcal{O}(n)$, expected.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Casting Problem

Summary:

- Have $\mathcal{O}(n)$ expected algorithm that tells us if a polyhedron \mathcal{P} with a given top face can be removed from the mold.
- Therefore have O(n²) algorithm to determine if P can be cast at all.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Outline

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Smallest Enclosing Disk

• Problem: Given a set of points in the plane, find the smallest disk that covers all of them.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Smallest Enclosing Disk

- Problem: Given a set of points in the plane, find the smallest disk that covers all of them.
- Naive approaches do not perform very well.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Smallest Enclosing Disk

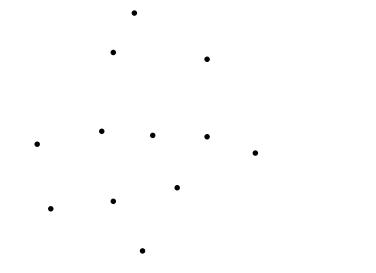
- Problem: Given a set of points in the plane, find the smallest disk that covers all of them.
- Naive approaches do not perform very well.
- Given the Farthest point Voronoi Diagram, can be solved in O(n) time.[SH75]

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Farthest Point Voronoi Diagram



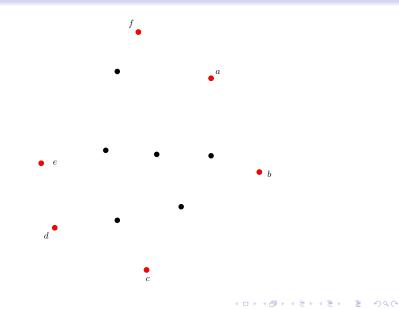
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Farthest Point Voronoi Diagram

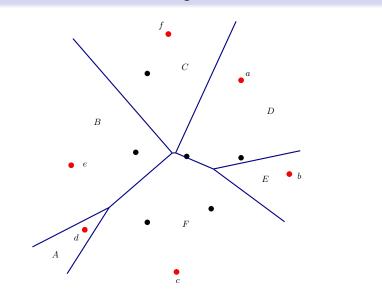


Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Farthest Point Voronoi Diagram



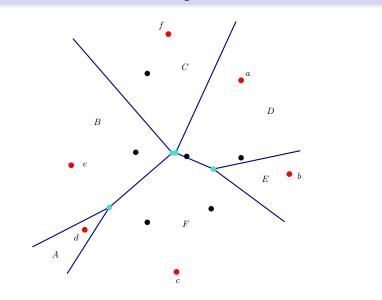
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Farthest Point Voronoi Diagram



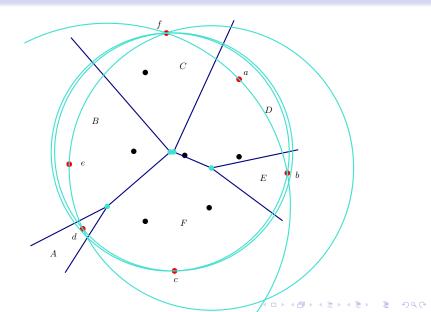
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Farthest Point Voronoi Diagram



Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Incremental Algorithm

- Set of Points $P := \{p_1, p_2, ..., p_n\}$
- $P_i := \{p_1, ..., p_i\}$
- D_i :=smallest disk enclosing P_i

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Incremental Algorithm

- Set of Points $P := \{p_1, p_2, ..., p_n\}$
- $P_i := \{p_1, ..., p_i\}$
- D_i :=smallest disk enclosing P_i

Incremental Step: Observation:

- (i) if $p_i \in D_{i-1}$ then $D_i = D_{i-1}$
- (ii) if $p_i \notin D_{i-1}$ then p_i lies on ∂D_i

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Smallest Enclosing Disk

1: procedure MINIDISK(P) 2: $P \leftarrow random Permutation(P)$ $D_2 \leftarrow$ smallest disk of $\{p_1, p_2\}$. 3: for $i \leftarrow 3 \dots n$ do 4: 5: if $p_i \in D_{i-1}$ then $D_i \leftarrow D_{i-1}$ 6: 7: else $D_i \leftarrow \text{DiskWithPoint}(\{p_1, \ldots, p_{i-1}\}, p_i)$ 8: end if 9: 10: end for 11: return D_n

12: end procedure

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Smallest Enclosing Disk, cont'd

- 1: procedure DISKWITHPOINT(P, q)
- 2: $P \leftarrow randomPermutation(P)$
- 3: $D_1 \leftarrow$ smallest enclosing disk for $\{p_1, q\}$.
- 4: for $j \leftarrow 2 \dots n$ do
- 5: if $p_j \in D_{j-1}$ then
- 6: $D_j \leftarrow D_{j-1}$
- 7: **else**
- 8: $D_j \leftarrow \text{DiskWith2Points}(\{p_1, \dots, p_{j-1}\}, p_j, q)$
- 9: **end if**
- 10: **end for**
- 11: return D_n
- 12: end procedure

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Smallest Enclosing Disk, cont'd

- 1: **procedure** DISKWITH2POINTS(P, q_1, q_2)
- 2: $D_0 \leftarrow$ smallest disk with $\{q_1, q_2\}$ on the boundary.
- 3: for $k \leftarrow 1 \dots n$ do
- 4: **if** $p_k \in D_{k-1}$ **then**
- 5: $D_k \leftarrow D_{k-1}$
- 6: **else**
- 7: $D_k \leftarrow \text{disk with } \{q_1, q_2, p_k\}$ on the boundary.
- 8: end if
- 9: end for
- 10: return *D_n*
- 11: end procedure

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- P a set of points
- R a possibly empty set of points
- $P \cap R = \emptyset$.
- *p* ∈ *P*

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- P a set of points
- R a possibly empty set of points
- $P \cap R = \emptyset$.
- *p* ∈ *P*
- (i) If there is a disk that encloses *P* and has *R* on its boundary, then the smallest such disk is unique. We denote it by *md*(*P*, *R*).

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- P a set of points
- R a possibly empty set of points
- $P \cap R = \emptyset$.
- *p* ∈ *P*
- (i) If there is a disk that encloses *P* and has *R* on its boundary, then the smallest such disk is unique. We denote it by *md*(*P*, *R*).
- (ii) If $p \in md(P \setminus \{p\}, R)$, then $md(P, R) = md(P \setminus \{p\}, R)$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

- P a set of points
- R a possibly empty set of points
- $P \cap R = \emptyset$.
- *p* ∈ *P*
- (i) If there is a disk that encloses *P* and has *R* on its boundary, then the smallest such disk is unique. We denote it by *md*(*P*, *R*).
- (ii) If $p \in md(P \setminus \{p\}, R)$, then $md(P, R) = md(P \setminus \{p\}, R)$

(iii) If
$$p \notin md(P \setminus \{p\}, R)$$
, then
 $md(P, R) = md(P \setminus \{p\}, R \cup \{p\})$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- DiskWith2Points() runs in linear time.
- Ignoring calls to DiskWith2Points(), DiskWithPoint() also runs in linear time. What are the chances we call DiskWith2Points()?

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- DiskWith2Points() runs in linear time.
- Ignoring calls to DiskWith2Points(), DiskWithPoint() also runs in linear time. What are the chances we call DiskWith2Points()?
- The probability of having to call it is bounded by $\frac{2}{i}$.
- Thus, DiskWithPoint() runs in time $\mathcal{O}(n) + \sum_{i=2}^{n} \mathcal{O}(i) \cdot \frac{2}{i} \in \mathcal{O}(n)$, expected.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

- DiskWith2Points() runs in linear time.
- Ignoring calls to DiskWith2Points(), DiskWithPoint() also runs in linear time. What are the chances we call DiskWith2Points()?
- The probability of having to call it is bounded by $\frac{2}{i}$.
- Thus, DiskWithPoint() runs in time $\mathcal{O}(n) + \sum_{i=2}^{n} \mathcal{O}(i) \cdot \frac{2}{i} \in \mathcal{O}(n)$, expected.
- Using the same argument, we can see that MiniDisk runs also ins O(n) expected time.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

(日) (日) (日) (日) (日) (日) (日)

- DiskWith2Points() runs in linear time.
- Ignoring calls to DiskWith2Points(), DiskWithPoint() also runs in linear time. What are the chances we call DiskWith2Points()?
- The probability of having to call it is bounded by $\frac{2}{i}$.
- Thus, DiskWithPoint() runs in time $\mathcal{O}(n) + \sum_{i=2}^{n} \mathcal{O}(i) \cdot \frac{2}{i} \in \mathcal{O}(n)$, expected.
- Using the same argument, we can see that MiniDisk runs also ins O(n) expected time.
- Linear space complexity.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary

- We have seen an easy to implement algorithm to find the smallest enclosing disk for a set of points in the plane.
- The algorithm runs in expected linear time and linear storage.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Outline

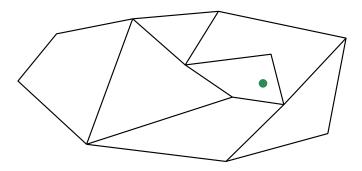
▲□▶▲圖▶▲≣▶▲≣▶ ■ のQ@

 Point Location ●○○○○○○○○ Delaunay Triangulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Point location

Problem: Given a partition of ℝ² and a query point *q*, find the face that *q* is in.



Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Point location

Plethora of Algorithms:

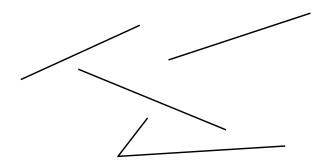
- Slab Method
- Chain Method
- Triangulation Refinement

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Trapezoidal Maps



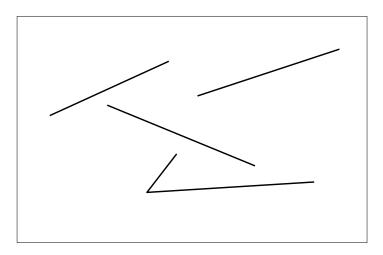
▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Trapezoidal Maps



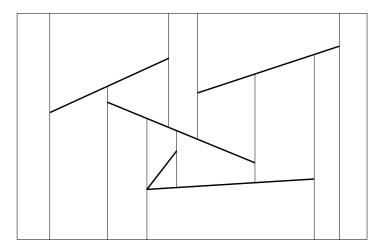
◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Trapezoidal Maps



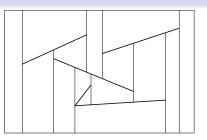
<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Trapezoidal Maps, cont'd



Each face Δ has

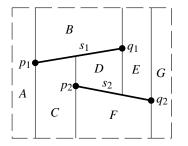
- up to two vertical edges.
- exactly two non-vertical edges, $bottom(\Delta)$ and $top(\Delta)$.
- a unique vertex that defines its left vertical edge, $leftp(\Delta)$.
- a unique vertex that defines its right vertical edge, rightp(Δ).
- up to four neighbors (two to the left, two to the right) we do not count those above or below.

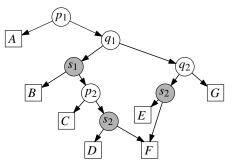
Search Trees

Smallest Enclosing Disk

Point Location

Delaunay Triangulations





ヘロト 人間 とくほとくほとう

[Image: [M4]]

æ

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Incremental Randomized Algorithm

Basic Idea: Given a set S of line segments, construct the trapezoidal map $\mathcal{T}(S)$ incrementally, while at the same time also constructing the search structure $\mathcal{D}(\mathcal{T}(S))$.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Incremental Randomized Algorithm, cont'd

- 1: procedure TRAPEZOIDALMAP(S)
- 2: Find bounding box *R*.
- 3: Initialize \mathcal{T} and \mathcal{D} for R.
- 4: Shuffle S.
- 5: for $i \leftarrow 1 \dots n$ do
- 6: Find the set $\Delta_0, \Delta_1, \dots, \Delta_k$ of trapezoids in \mathcal{T} that intersect s_i .
- 7: Remove these trapezoids from T and replace them with new trapezoids that appear due to the intersection with s_i .
- 8: Remove the leaves for $\Delta_0, \ldots, \Delta_k$ from \mathcal{D} and create new ones for the new trapezoids. Link them to the search tree appropriately by adding new inner nodes.
- 9: end for
- 10: return $(\mathcal{T}, \mathcal{D})$.
- 11: end procedure

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

(日) (日) (日) (日) (日) (日) (日)

- Correctness: Follows from construction, in particular the loop invariants.
- Search Complexity: depends on the depth of the search structure.
 - Depth of \mathcal{D} increases by at most 3 every iteration. Therefore the query time is bounded by 3*n*.
 - Consider a fixed search path for *q* in *D*. Let *X_i* be a random variable denoting the number of nodes added on that path in iteration *i*.
 - So the search path has length $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$.
 - Let P_i be the probability that we added a node in iteration *i*. $E[X_i] \leq 3P_i$.
 - What is P_i?

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

(日) (日) (日) (日) (日) (日) (日)

- Correctness: Follows from construction, in particular the loop invariants.
- Search Complexity: depends on the depth of the search structure.
 - Depth of \mathcal{D} increases by at most 3 every iteration. Therefore the query time is bounded by 3*n*.
 - Consider a fixed search path for *q* in *D*. Let *X_i* be a random variable denoting the number of nodes added on that path in iteration *i*.
 - So the search path has length $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$.
 - Let P_i be the probability that we added a node in iteration *i*. $E[X_i] \leq 3P_i$.
 - $P_i = Pr[\Delta_q(\mathcal{S}_i) \neq \Delta_q(\mathcal{S}_{i-1})].$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

(日) (日) (日) (日) (日) (日) (日)

- Correctness: Follows from construction, in particular the loop invariants.
- Search Complexity: depends on the depth of the search structure.
 - Depth of \mathcal{D} increases by at most 3 every iteration. Therefore the query time is bounded by 3*n*.
 - Consider a fixed search path for *q* in *D*. Let *X_i* be a random variable denoting the number of nodes added on that path in iteration *i*.
 - So the search path has length $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$.
 - Let P_i be the probability that we added a node in iteration *i*. $E[X_i] \leq 3P_i$.
 - $P_i = Pr[\Delta_q(S_i) \neq \Delta_q(S_{i-1})] = Pr[\Delta_q(S_i) \notin \mathcal{T}(S_{i-1})].$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

(日) (日) (日) (日) (日) (日) (日)

- Correctness: Follows from construction, in particular the loop invariants.
- Search Complexity: depends on the depth of the search structure.
 - Depth of \mathcal{D} increases by at most 3 every iteration. Therefore the query time is bounded by 3*n*.
 - Consider a fixed search path for *q* in *D*. Let *X_i* be a random variable denoting the number of nodes added on that path in iteration *i*.
 - So the search path has length $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$.
 - Let P_i be the probability that we added a node in iteration *i*. $E[X_i] \leq 3P_i$.
 - $P_i = \Pr[\Delta_q(\mathcal{S}_i) \neq \Delta_q(\mathcal{S}_{i-1})] = \Pr[\Delta_q(\mathcal{S}_i) \notin \mathcal{T}(\mathcal{S}_{i-1})] \leq \frac{4}{i}.$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

- Correctness: Follows from construction, in particular the loop invariants.
- Search Complexity: depends on the depth of the search structure.
 - Depth of \mathcal{D} increases by at most 3 every iteration. Therefore the query time is bounded by 3*n*.
 - Consider a fixed search path for *q* in *D*. Let *X_i* be a random variable denoting the number of nodes added on that path in iteration *i*.
 - So the search path has length $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$.
 - Let P_i be the probability that we added a node in iteration *i*. $E[X_i] \leq 3P_i$.
 - $P_i = Pr[\Delta_q(\mathcal{S}_i) \neq \Delta_q(\mathcal{S}_{i-1})] = Pr[\Delta_q(\mathcal{S}_i) \notin \mathcal{T}(\mathcal{S}_{i-1})] \leq \frac{4}{i}.$
 - So the total length is $12 \sum_{i=1}^{n} \frac{1}{i} \in \mathcal{O}(\log n)$ expected.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Analysis

- Similarly, it can be shown that the size of D is O(n) expected, and
- that the running time of TrapezoidalMap is O(n log n) expected.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We have seen an algorithm that given a set S of n line segments builds a trapezoidal map and a search structure in $\mathcal{O}(n \log n)$ expected time and $\mathcal{O}(n)$ expected space. These structures support point location queries in $\mathcal{O}(\log n)$ expected time.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Outline

2 Smallest Enclosing Disk

3 Point Location

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Delaunay Triangulation

- Definition: Let P be a set of points in the plane, and let T be a triangulation of P. Then T is a *Delauney Triangulation* if the circumcircle of any triangle of T does not contain a point of P in its interior.
- Dual Graph of the point Voronoi diagram.

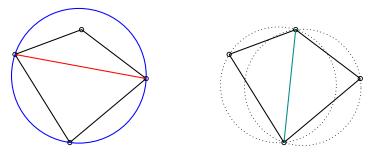
Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Legal and Illegal Edges



- T is a Delauney Triangulation if it has no *illegal edges*.
- Every triangulation can be transformed into a DT by continuously flipping illegal edges.

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Incremental Algorithm

- 1: **procedure** DELAUNEYTRIANGULATION(*P*)
- 2: Let p_0 be a point on CH(P).
- 3: Create p_{-1} , p_{-2} so that p_0 , p_{-1} , p_{-2} are a bounding Δ .
- 4: Randomly permute $p_2, \ldots p_n$.
- 5: Initialize \mathcal{T} with $\Delta p_0, p_{-1}, p_{-2}$.
- 6: for $i \leftarrow 2 \dots n$ do
- 7: Find Δ that contains p_i .
- 8: Split triangles.
- 9: Legalize affected edges.
- 10: end for
- 11: Discard p_{-1} , p_{-2} and all incident edges.
- 12: return \mathcal{T}
- 13: end procedure

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Analysis

The expected number of total triangles created is bounded by 1 + 9n.

- In iteration *r* we insert p_r and get T_r .
- For every triangle created during the "split triangles" step, we create one edge incident at *p*_r. During the "legalize edges" step we add one incident edge for every two triangles created.
- If the degree of p_r after insertion is k, we have created at most 2k - 3 triangles. What is this k?

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Analysis

The expected number of total triangles created is bounded by 1 + 9n.

- In iteration r we insert p_r and get T_r .
- For every triangle created during the "split triangles" step, we create one edge incident at *p*_r. During the "legalize edges" step we add one incident edge for every two triangles created.
- If the degree of p_r after insertion is k, we have created at most 2k - 3 triangles. What is this k?
- p_r is just a random element of P_r . T_r has at most 3(r+3)-6) edges. Therefore, $\sum_{i=1}^r deg(p_i) \le 6r$.
- It follows that $E[number of triangles created in step r] \le 2 \cdot 6 3 = 9$

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Analysis, cont'd

- To support the point location queries, we create a search structure D. This will have a node for every triangle created. Thus expected space is in O(n).
- Expected running time ignoring point location is proportional to the number of triangles created. Therefore

 ignoring point location – expected running time is in O(n) as well.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Analysis, cont'd

- To support the point location queries, we create a search structure D. This will have a node for every triangle created. Thus expected space is in O(n).
- Expected running time ignoring point location is proportional to the number of triangles created. Therefore

 ignoring point location – expected running time is in O(n) as well.
- Point location dominates this however. Amortized over the entire run it requires O(n log n) [omitted].

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We have seem a randomized incremental algorithm to construct a Delauney Triangulation. It runs in $O(n \log n)$ expected time and requires linear expected space.

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

Thank you for your attention.

Questions?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Smallest Enclosing Disk

Point Location

Delaunay Triangulations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

References I

- Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Cheong "Computational Geometry: Algorithms and Applications", Third Edition, Springer 2008
- Michael Ian Shamos, Dan Hoey "Closest Point Problems", in Proceedings of 16th Annual IEEE Symposium on Foundations of Computer Science (1975)