
COMPUTING

STRAIGHT SKELETONS

BY MEANS OF

KINETIC TRIANGULATIONS

Peter Palfrader

October 2013

1



COMPUTING STRAIGHT SKELETONS

BY MEANS OF KINETIC TRIANGULATIONS

1 INTRODUCTION
Definition
Applications

2 TRIANGULATION-BASED ALGORITHM
Basic Idea
Flaws of the original Algorithm
Experimental Results

3 FUTURE WORK

2



STRAIGHT SKELETONS

pferd11cm0.722

• Aichholzer, Alberts, Aurenhammer, Gärtner 1995.
• Problem: Given input graph, find the straight skeleton.

3



STRAIGHT SKELETONS

• Aichholzer, Alberts, Aurenhammer, Gärtner 1995.
• Problem: Given input graph, find the straight skeleton.

3



PRELIMINARIES

a

b c

d

6=
a

b c

d

• When we consider a graph G = (V ,E) we always consider
its embedding.

• We care about planar, straight-line graphs or PSLGs.

4



PRELIMINARIES

a

b c

d

• When we consider a graph G = (V ,E) we always consider
its embedding.

• We care about planar, straight-line graphs or PSLGs.

4



PRELIMINARIES

a

b c

d

• When we consider a graph G = (V ,E) we always consider
its embedding.

• We care about planar, straight-line graphs or PSLGs.

4



PRELIMINARIES

a

b c

d

• When we consider a graph G = (V ,E) we always consider
its embedding.

• We care about planar, straight-line graphs or PSLGs.

4



PRELIMINARIES

a

b c

d

• When we consider a graph G = (V ,E) we always consider
its embedding.

• We care about planar, straight-line graphs or PSLGs.

4



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).

• wavefront propagation — shrinking process.
• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).

• wavefront propagation — shrinking process.
• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).
• wavefront propagation — shrinking process.

• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).
• wavefront propagation — shrinking process.
• straight skeleton SK(P) is traces of wavefront vertices.

5



STRAIGHT SKELETONS – MOTIVATION

• Aichholzer et al. [AAAG95].
• input polygon P emanates wavefrontWF(P, t).
• wavefront propagation — shrinking process.
• straight skeleton SK(P) is traces of wavefront vertices.

5



TOPOLGY CHANGES – EDGE EVENTS

• Wavefront topology changes over time.

• edge event: an edge ofWF(P, t) vanishes.
• In SK(P), such a topology change is witnessed by nodes.

6



TOPOLGY CHANGES – EDGE EVENTS

• Wavefront topology changes over time.

• edge event: an edge ofWF(P, t) vanishes.
• In SK(P), such a topology change is witnessed by nodes.

6



TOPOLGY CHANGES – EDGE EVENTS

• Wavefront topology changes over time.

• edge event: an edge ofWF(P, t) vanishes.
• In SK(P), such a topology change is witnessed by nodes.

6



TOPOLGY CHANGES – EDGE EVENTS

edge events

• Wavefront topology changes over time.
• edge event: an edge ofWF(P, t) vanishes.

• In SK(P), such a topology change is witnessed by nodes.

6



TOPOLGY CHANGES – EDGE EVENTS

edge events

• Wavefront topology changes over time.
• edge event: an edge ofWF(P, t) vanishes.
• In SK(P), such a topology change is witnessed by nodes.

6



TOPOLGY CHANGES – EDGE EVENTS

edge events

• Wavefront topology changes over time.
• edge event: an edge ofWF(P, t) vanishes.
• In SK(P), such a topology change is witnessed by nodes.

6



TOPOLGY CHANGES – SPLIT EVENTS

• Wavefront topology changes over time.

• edge event: an edge ofWF(P, t) vanishes.
• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

7



TOPOLGY CHANGES – SPLIT EVENTS

edge events

• Wavefront topology changes over time.
• edge event: an edge ofWF(P, t) vanishes.

• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

7



TOPOLGY CHANGES – SPLIT EVENTS

• Wavefront topology changes over time.
• edge event: an edge ofWF(P, t) vanishes.

• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

7



TOPOLGY CHANGES – SPLIT EVENTS

split event

• Wavefront topology changes over time.
• edge event: an edge ofWF(P, t) vanishes.
• split event: wavefront splits into two parts.

• In SK(P), events (topology changes) are witnessed by
nodes.

7



TOPOLGY CHANGES – SPLIT EVENTS

split event

• Wavefront topology changes over time.
• edge event: an edge ofWF(P, t) vanishes.
• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

7



TOPOLGY CHANGES – SPLIT EVENTS

split event
edge events

• Wavefront topology changes over time.
• edge event: an edge ofWF(P, t) vanishes.
• split event: wavefront splits into two parts.
• In SK(P), events (topology changes) are witnessed by

nodes.

7



STRAIGHT SKELETON OF A PSLG

• This definition can easily be expanded to work for arbitrary
planar straight line graphs instead of just simple polygons.

8



SUMMARY: STRAIGHT SKELETONS

• The straight skeleton is the union of traces of wavefront
vertices over the propagation process.

• The topology of the wavefront changes with time due to
edge and split events. These are witnessed in SK as
nodes.

9



APPLICATIONS: ROOF MODELING

image credit: Stefan Huber

10



APPLICATIONS: GIS

image credit: Stefan Huber

11



APPLICATIONS: OFFSETTING

12



APPLICATIONS: OFFSETTING

12



APPLICATIONS: OFFSETTING

12



APPLICATIONS: CUT AND FOLD

[DDL98] image credit: Erik Demaine

13



APPLICATIONS: AND MUCH MORE

• Design of Pop-Up cards [Sugi13].

• Shape reconstruction and contour interpolation [OPC96].

• Area collapsing in geographic maps and centerlines of
roads [HS08].

14



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.
• Problem: When will the next event happen, and what is it?
• If we solve this, we can incrementally construct the SK.

15



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.
• Problem: When will the next event happen, and what is it?
• If we solve this, we can incrementally construct the SK.

15



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.
• Problem: When will the next event happen, and what is it?
• If we solve this, we can incrementally construct the SK.

15



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.
• Problem: When will the next event happen, and what is it?
• If we solve this, we can incrementally construct the SK.

15



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.
• Problem: When will the next event happen, and what is it?
• If we solve this, we can incrementally construct the SK.

15



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.
• Problem: When will the next event happen, and what is it?
• If we solve this, we can incrementally construct the SK.

15



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.
• Problem: When will the next event happen, and what is it?
• If we solve this, we can incrementally construct the SK.

15



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.
• Problem: When will the next event happen, and what is it?
• If we solve this, we can incrementally construct the SK.

15



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.
• Problem: When will the next event happen, and what is it?
• If we solve this, we can incrementally construct the SK.

15



COMPUTING THE STRAIGHT SKELETON

• Common approach: simulate the wavefront propagation.
• Problem: When will the next event happen, and what is it?
• If we solve this, we can incrementally construct the SK.

15



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

v

e

∆

2.5 3.0
time

−1

0

1

2
A

∆
(t

im
e)

∆ collapses

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.

• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

• Aichholzer, Aurenhammer [AA98].
• Maintain a kinetic triangulation of the points of the plane

not yet visited.
• Collapsing triangles witness edge and split events.

• Compute collapse times of triangles.
• Maintain a priority queue of collapses.
• On events, update triangulation and priority queue as

required.

• We can always easily find the next event, and thus
compute the straight skeleton.

16



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

17



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

17



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

17



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.

• Instead they need special processing: flip events.

17



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

17



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

17



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

17



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

17



TRIANGULATION-BASED ALGORITHM

• Caveat: Not all collapses witness changes in the wavefront
topology.

• Such collapses cannot be ignored.
• Instead they need special processing: flip events.

17



CONTRIBUTION [PHH12]

• We have implemented this algorithm.
• We filled in gaps in the description of the algorithm.
• The algorithm does not always work when input is not in

general position. We have identified and corrected these
flaws.

• We have run extensive tests using this code.

18



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

19



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

19



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

19



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

19



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

19



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

19



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

19



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

19



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

19



FLIP-EVENT LOOPS

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

19



AVOIDING FLIP-EVENT LOOPS WITH EGC

If we had exact arithmetic operations, the following would work:

• First, pick the non-flip event→ reduces triangles

• If only flip events are left, pick the one with the longest
edge to flip→ reduces longest edge (count or length)

20



DETECTING FLIP-EVENT LOOPS

• Keep a history of flip events 〈e1,e2, . . .〉 where each
ei = (ti ,∆i).

• This history can be cleared when we encounter an edge or
split event.

• If we encounter a flip event a second time, we may be in a
flip-event loop.

21



HANDLING FLIP-EVENT LOOPS

Brief outline:
• Identify the polygon P which has collapsed to a straight

line.
• Retriangulate P and its neighborhood.

• This approach is also applicable to kinetic triangulations in
other algorithms [MHH12].

22



HANDLING FLIP-EVENT LOOPS

Brief outline:
• Identify the polygon P which has collapsed to a straight

line.
• Retriangulate P and its neighborhood.

• This approach is also applicable to kinetic triangulations in
other algorithms [MHH12].

22



HANDLING FLIP-EVENT LOOPS

Brief outline:
• Identify the polygon P which has collapsed to a straight

line.
• Retriangulate P and its neighborhood.

• This approach is also applicable to kinetic triangulations in
other algorithms [MHH12].

22



HANDLING FLIP-EVENT LOOPS

Brief outline:
• Identify the polygon P which has collapsed to a straight

line.
• Retriangulate P and its neighborhood.

• This approach is also applicable to kinetic triangulations in
other algorithms [MHH12].

22



HANDLING FLIP-EVENT LOOPS

Brief outline:
• Identify the polygon P which has collapsed to a straight

line.
• Retriangulate P and its neighborhood.

• This approach is also applicable to kinetic triangulations in
other algorithms [MHH12].

22



HANDLING FLIP-EVENT LOOPS

Brief outline:
• Identify the polygon P which has collapsed to a straight

line.
• Retriangulate P and its neighborhood.

• This approach is also applicable to kinetic triangulations in
other algorithms [MHH12].

22



NUMBER OF FLIP EVENTS

• O(n3) is the best known upper bound on the number of flip
events,

• No input is known that results in more than quadratically
many flip events.

• It turns out that for practical data the number of flip events
is very linear.

23



NUMBER OF FLIP EVENTS, II

102 103 104 105 106

input size (number of vertices)

0

1

2

3

fli
ps

/n
um

v

24



PERFORMANCE OBSERVATIONS

theoretical worst case practical

runtime space runtime space

E&E1 O(n17/11+ε) O(n17/11+ε) N/A

CGAL2 O(n2 log n) O(n2) O(n2 log n) O(n2)

Bone3 O(n2 log n) O(n) O(n log n) O(n)

Surfer4 O(n3 log n) O(n) O(n log n) O(n)

1Eppstein and Erickson [EE99]
2F. Cacciola, submission to CGAL, 2004
3Huber and Held [HH10]
4Palfrader et al. [PHH12], based on Aichholzer and Aurenhammer [AA98]

25



RUNTIME TESTS

0.01

0.1

1

10

100

1000

103 104 105 106

ru
nt
im
e
(s
ec
on
ds
)

Surfer

BoneCGAL

10MB

100MB

1GB

103 104 105 106

m
em

or
y
us
ag
e

Surfer

BoneCGAL

Runtime and memory usage behavior of CGAL, Bone, and
Surfer for inputs of different sizes.
Bone and Surfer use their IEEE 754 double precision backend.

26



MPFR

0 1000 2000 3000 4000 5000
MPFR precision (bits)

0

50

100

150

Sl
ow

do
w

n
fa

ct
or

slowdown

0 1000 2000 3000 4000 5000
MPFR precision (bits)

0

10

20

30

40

Bl
ow

up
fa

ct
or

blowup

27



SUMMARY

• We have implemented Aichholzer and Aurenhammer’s
algorithm from 1998, filling in details in the algorithm
description.

• We fixed real problems that arise in the absence of general
position.

• Our approach to handling flip events has wider
applications.

• The implementation runs in O(n log n) time for real-world
data. The number of flip events is linear in practice.

• It is industrial-strength, having been tested on tens of
thousands of inputs.

• It is the fastest straight skeleton construction code to date,
handling millions of vertices in mere seconds.

28



FUTURE WORK: MITERED REFLEX VERTICES

• The current definition causes fast moving vertices for
angles approaching 2 · π.

• Investigate and implement some kind of restricted miters.

29



FUTURE WORK: MITERED REFLEX VERTICES

• The current definition causes fast moving vertices for
angles approaching 2 · π.

• Investigate and implement some kind of restricted miters.

29



FUTURE WORK: MITERED REFLEX VERTICES

• The current definition causes fast moving vertices for
angles approaching 2 · π.

• Investigate and implement some kind of restricted miters.

29



FUTURE WORK: MITERED REFLEX VERTICES

• The current definition causes fast moving vertices for
angles approaching 2 · π.

• Investigate and implement some kind of restricted miters.

29



FUTURE WORK: MITERED REFLEX VERTICES

• The current definition causes fast moving vertices for
angles approaching 2 · π.

• Investigate and implement some kind of restricted miters.

29



FUTURE WORK: MITERED REFLEX VERTICES

α

α

• The current definition causes fast moving vertices for
angles approaching 2 · π.

• Investigate and implement some kind of restricted miters.

29



FUTURE WORK: UPPER BOUND

• O(n3) is the best known upper bound on the number of flip
events.

• But Rubin showed O(n2+ε) for kinetic Delaunay
Triangulations where vertices move at unit
speed [Rubin13].

• Can we transfer this result?

30



FUTURE WORK: UPPER BOUND

• O(n3) is the best known upper bound on the number of flip
events.

• But Rubin showed O(n2+ε) for kinetic Delaunay
Triangulations where vertices move at unit
speed [Rubin13].

• Can we transfer this result?

30



FUTURE WORK: WEIGHTED STRAIGHT SKELETON

• Weighted SK: Edges move at different speeds, maybe
even negative speeds.

• Which of the properties of the straight skeleton (planarity,
tree structure, faces are monotone) carry over to weighted
straight skeletons [BHHKP13]?

+3

+3 −1

−3

−1

31



QUESTIONS

Thank you for your attention.

Questions

32



REFERENCES I

• Oswin Aichholzer, Franz Aurenhammer, David Alberts, Bernd Gärtner, ”A Novel Type of Skeleton for Polygons”,
Journal of Universal Computer Science, Volume 1, Issue 12, pages 752–761, 1995

• J.M. Oliva, M. Perrin, S. Coquillart, ”3D Reconstruction of Complex Polyhedral Shapes from Contours Using a
Simplified Generalized Voronoi Diagram”, Computer Graphics Forum. Volume 15, Issue 3, pages 397–408, 1996

• Oswin Aichholzer, Franz Aurenhammer, ”Straight Skeletons for General Polygonal Figures in the Plane”,
Voronoi’s Impact on Modern Sciences II, pages 7–21, 1998

• Erik Demaine, Martin Demaine, Anna Lubiw ”Folding and Cutting Paper”, Revised Papers from the Japan
Conference on Discrete and Computational Geometry (JCDCG’98)

• David Eppstein, Jeff Erickson, ”Raising Roofs, Crashing Cycles, and Playing Pool Applications of a Data
Structure for Finding Pairwise Interactions”, Discrete & Computational Geometry, Volume 22, pages 569–592,
1999

• Kokichi Sugihara, ”Design of Pop-Up Cards Based on Weighted Straight Skeletons”, Proceedings of the 10th

International Symposium on Voronoi Diagrams in Science and Engineering (ISVD’13)

• J.-H. Haunert, M. Sester, ”Area Collapse and Road Centerlines Based on Straight Skeletons”, GeoInformatica,
Volume 12, pages 169–191, 2008

• Stefan Huber, Martin Held, ”Computing Straight Skeletons of Planar Straight-Line Graphs Based on Motorcycle
Graphs”, Proceedings of the 22th Canadian Conference on Computational Geometry (CCCG 2010)

• Peter Palfrader, Martin Held, Stefan Huber, ”On Computing Straight Skeletons by Means of Kinetic
Triangulations”, Proceedings of the 20th Annual European Symposium on Algorithms (ESA 2012)

• Willi Mann, Martin Held, Stefan Huber, ”Computing Motorcycle Graphs Based on Kinetic Triangulations”,
Proceedings of the 24th Canadian Conference on Computational Geometry (CCCG 2012)

• Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, Peter Palfrader, ”Weighted Straight Skeletons In the
Plane”, Proceedings of the 25th Canadian Conference on Computational Geometry (CCCG 2013)

33



REFERENCES II

• Natan Rubin, ”On Kinetic Delaunay Triangulations; A Near Quadratic Bound for Unit Speed Motions” Accepted to
54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013)

34



GALLERY: BORDERS OF AUSTRIA

35



GALLERY: RANDOM POLYGON

36



GALLERY: PCB

37



GALLERY: POLYGON WITH HOLE

38



GALLERY: CIRCULAR HOLES

39



GALLERY: MORE HOLES

40



GALLERY: ALMOST POLYGON

41



GALLERY: STAR

42



GALLERY: SPIRALS

43



MEDIAL AXIS VS. SK

VD-based MA SK

44



ALTERNATE COMPUTATION

v

e

∆

2.5 3.0
time

−1

0

1

2

f(
ti

m
e)

∆ collapses

45



INFINITELY FAST VERTICES

v1

v2

∆1

∆2

e1

e2

w2

w1

46



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

47



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

47



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

47



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

47



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

47



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

47



TRIANGULATING

• Triangulate the convex hull.
• Unfortunately the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?

47



Ω FOR FLIP EVENTS

N1
N2

. . .
Nm

E1
E2 . . .

Ek

E1 E2

W

48



Ω FOR NON-FLIP EVENTS

S(P)

P

Ω(n) edge events

Ω(n) triangles

e1
e2

ek
. . .

49



AFFECTED TRIANGLES, MAX

102 103 104 105 106

input size (number of vertices)

100

101

102

103

104

af
fe

ct
ed

tr
ia

ng
le

s

in edge events

102 103 104 105 106

input size (number of vertices)

100

101

102

103

104

af
fe

ct
ed

tr
ia

ng
le

s
in split events

50



AFFECTED TRIANGLES, AVG

102 103 104 105 106

input size (number of vertices)

10−1

100

101

102

af
fe

ct
ed

∆
/e

ve
nt

51



TIME SPENT, PHASES

pre-processin
g

tria
ngulation

kinetic
tria

ngulation

initia
l schedule

propagation process

post-p
rocessin

g
0 %

20 %

40 %

60 %

80 %

100 %

ru
nt

im
e

(p
er

ce
nt

ag
e

of
to

ta
l)

52


	Introduction
	Definition
	Applications

	Triangulation-based Algorithm
	Basic Idea
	Flaws of the original Algorithm
	Experimental Results

	Future Work
	Appendix
	References
	Gallery


