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» Wavefront topology changes over time.
* edge event. an edge of WF (P, t) vanishes.
* split event:. wavefront splits into two parts.

* In SKC(P), events (topology changes) are witnessed by
nodes.

split event
edge events




STRAIGHT SKELETON OF A PSLG

« This definition can easily be expanded to work for arbitrary
planar straight line graphs instead of just simple polygons.

VIV



SUMMARY: STRAIGHT SKELETONS

* The straight skeleton is the union of traces of wavefront
vertices over the propagation process.

 The topology of the wavefront changes with time due to
edge and split events. These are witnessed in SK as
nodes.
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APPLICATIONS: CUT AND FOLD

[D DL98] image credit: Erik Demaine



APPLICATIONS: AND MUCH MORE

* Design of Pop-Up cards [Sugi13].
+ Shape reconstruction and contour interpolation [OPC96].

* Area collapsing in geographic maps and centerlines of
roads [HS08].
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* Aichholzer, Aurenhammer [AA98].
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» Compute collapse times of triangles.

A collapses

Ap(time)
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25 3.0
time



TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

* Collapsing triangles witness edge and split events.

» Compute collapse times of triangles.
+ Maintain a priority queue of collapses.

» On events, update triangulation and priority queue as
required.

» We can always easily find the next event, and thus
compute the straight skeleton.
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CONTRIBUTION [PHH12]

+ We have implemented this algorithm.
« We filled in gaps in the description of the algorithm.

 The algorithm does not always work when input is not in
general position. We have identified and corrected these
flaws.

» We have run extensive tests using this code.
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FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

 This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!



AVOIDING FLIP-EVENT LOOPS WITH EGC

If we had exact arithmetic operations, the following would work:

» First, pick the non-flip event — reduces triangles

* If only flip events are left, pick the one with the longest
edge to flip — reduces longest edge (count or length)

20



DETECTING FLIP-EVENT LOOPS

* Keep a history of flip events (eq, es, ...) where each
e = (f,', A,’).

« This history can be cleared when we encounter an edge or
split event.

« If we encounter a flip event a second time, we may be in a
flip-event loop.

21



HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

22



HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

22



HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

22



HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

- ~a
- ~
- -~
- -~
- -
- “a
-® -~

22



HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

»!
-
- ~
\\\\\\\\
\\\\\
- S~
-" S~

22



HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.
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 This approach is also applicable to kinetic triangulations in
other algorithms [MHH12].

22



NUMBER OF FLIP EVENTS

« O(n®) is the best known upper bound on the number of flip
events,

* No input is known that results in more than quadratically
many flip events.

* It turns out that for practical data the number of flip events
is very linear.

23



NUMBER OF FLIP EVENTS, II

flips/num v

102 10° 10* 10°
input size (number of vertices)

10°
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PERFORMANCE OBSERVATIONS

theoretical worst case practical
runtime space runtime | space
E&E' || o(n'7/11+e) | o(n'7/11+¢) N/A
CGAL? | O(n?logn) O(n?) O(n?logn) | O(n?)
Bone® || O(n?log n) O(n) O(nlogn) | O(n)
Surfer* || O(n®log n) o(n) O(nlogn) | O(n)

'Eppstein and Erickson [EE99]

2F, Cacciola, submission to CGAL, 2004
3Huber and Held [HH10]
“Palfrader et al. [PHH12], based on Aichholzer and Aurenhammer [AA98]

25



RUNTIME TESTS

I T R iy O
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Runtime and memory usage behavior of CGAL, Bone, and
Surfer for inputs of different sizes.
Bone and Surfer use their IEEE 754 double precision backend.



MPFR
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SUMMARY

We have implemented Aichholzer and Aurenhammer’s
algorithm from 1998, filling in details in the algorithm
description.

We fixed real problems that arise in the absence of general
position.

Our approach to handling flip events has wider
applications.

The implementation runs in O(nlog n) time for real-world
data. The number of flip events is linear in practice.

It is industrial-strength, having been tested on tens of
thousands of inputs.

It is the fastest straight skeleton construction code to date,
handling millions of vertices in mere seconds.

28
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» The current definition causes fast moving vertices for
angles approaching 2 - .
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FUTURE WORK: UPPER BOUND

« O(n®) is the best known upper bound on the number of flip
events.
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FUTURE WORK: UPPER BOUND

« O(n®) is the best known upper bound on the number of flip
events.

- But Rubin showed O(n?*¢) for kinetic Delaunay
Triangulations where vertices move at unit
speed [Rubin13].

« Can we transfer this result?

30



FUTURE WORK: WEIGHTED STRAIGHT SKELETON

* Weighted SK: Edges move at different speeds, maybe
even negative speeds.

» Which of the properties of the straight skeleton (planarity,

tree structure, faces are monotone) carry over to weighted
straight skeletons [BHHKP13]?

31



QUESTIONS

Thank you for your attention.

Questions |:|

32
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GALLERY: BORDERS OF AUSTRIA
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GALLERY: RANDOM POLYGON
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GALLERY: PCB
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GALLERY: POLYGON WITH HOLE
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GALLERY: CIRCULAR HOLES
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GALLERY: MORE HOLES




GALLERY: ALMOST POLYGON
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GALLERY: STAR
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GALLERY: SPIRALS
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ALTERNATE COMPUTATION

A collapses

f(time)

2.5 3.0
time
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INFINITELY FAST VERTICES

€1

€2
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« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

47



TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

47



TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

47



TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

+ We need to update the triangulation at some point before
this happens, but how?

47



TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

+ We need to update the triangulation at some point before
this happens, but how?

47



TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

+ We need to update the triangulation at some point before
this happens, but how?

47



TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

* We need to update the triahgulétion at some point before
this happens, but how?

47



()2 FOR FLIP EVENTS

T BB
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{2 FOR NON-FLIP EVENTS

Q(n) triangles

" QO(n) edge events

49



AFFECTED TRIANGLES, MAX
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AFFECTED TRIANGLES, AVG

10%

affected A/event

100 F

101

10? 103 10* 10°
input size (number of vertices)

10°

51



TIME SPENT, PHASES

100 % T
T 80%
o
o
“—
@]
Q
80 60% [
S o
=
O]
(o]
5
& 40%
o —_
.g $
=
5 20% —_
-
0%
Q‘o&%\é\o% ‘ o\)\@( o
Q‘e‘ R

52



	Introduction
	Definition
	Applications

	Triangulation-based Algorithm
	Basic Idea
	Flaws of the original Algorithm
	Experimental Results

	Future Work
	Appendix
	References
	Gallery


