COMPUTING
STRAIGHT SKELETONS

BY MEANS OF

KINETIC TRIANGULATIONS

Peter Palfrader

October 2013

COMPUTING STRAIGHT SKELETONS
BY MEANS OF KINETIC TRIANGULATIONS

© INTRODUCTION
Definition
Applications

@®© TRIANGULATION-BASED ALGORITHM
Basic Idea
Flaws of the original Algorithm
Experimental Results

© FUTURE WORK

STRAIGHT SKELETONS

 Aichholzer, Alberts, Aurenhammer, Gartner 1995.
» Problem: Given input graph, find the straight skeleton.

STRAIGHT SKELETONS

 Aichholzer, Alberts, Aurenhammer, Gartner 1995.
» Problem: Given input graph, find the straight skeleton.

PRELIMINARIES

* When we consider a graph G = (V, E) we always consider
its embedding.

PRELIMINARIES

* When we consider a graph G = (V, E) we always consider
its embedding.

+ We care about planar, straight-line graphs or PSLGs.

PRELIMINARIES

* When we consider a graph G = (V, E) we always consider
its embedding.

+ We care about planar, straight-line graphs or PSLGs.

PRELIMINARIES

* When we consider a graph G = (V, E) we always consider
its embedding.

+ We care about planar, straight-line graphs or PSLGs.

PRELIMINARIES

* When we consider a graph G = (V, E) we always consider
its embedding.

+ We care about planar, straight-line graphs or PSLGs.

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].
* input polygon P emanates wavefront WF(P, t).

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].
* input polygon P emanates wavefront WF(P, t).

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].
* input polygon P emanates wavefront WF(P, t).
+ wavefront propagation — shrinking process.

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].
* input polygon P emanates wavefront WF(P, t).
+ wavefront propagation — shrinking process.

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].
* input polygon P emanates wavefront WF(P, t).
+ wavefront propagation — shrinking process.

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].
* input polygon P emanates wavefront WF(P, t).
+ wavefront propagation — shrinking process.

N

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].
* input polygon P emanates wavefront WF(P, t).
+ wavefront propagation — shrinking process.

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].
* input polygon P emanates wavefront WF(P, t).
+ wavefront propagation — shrinking process.

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].
* input polygon P emanates wavefront WF(P, t).
+ wavefront propagation — shrinking process.

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].
* input polygon P emanates wavefront WF(P, t).
+ wavefront propagation — shrinking process.

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].

* input polygon P emanates wavefront WF(P, t).

+ wavefront propagation — shrinking process.

« straight skeleton SK(P) is traces of wavefront vertices.

STRAIGHT SKELETONS — MOTIVATION

* Aichholzer et al. [AAAG95].

* input polygon P emanates wavefront WF(P, t).

+ wavefront propagation — shrinking process.

« straight skeleton SK(P) is traces of wavefront vertices.

ToPOLGY CHANGES — EDGE EVENTS

» Wavefront topology changes over time.

ToPOLGY CHANGES — EDGE EVENTS

» Wavefront topology changes over time.

TOPOLGY CHANGES — EDGE EVENTS

» Wavefront topology changes over time.

TOPOLGY CHANGES — EDGE EVENTS

» Wavefront topology changes over time.
* edge event. an edge of WF (P, t) vanishes.

edge events

TOPOLGY CHANGES — EDGE EVENTS

» Wavefront topology changes over time.
* edge event. an edge of WF (P, t) vanishes.
* In SK(P), such a topology change is witnessed by nodes.

edge events

TOPOLGY CHANGES — EDGE EVENTS

» Wavefront topology changes over time.
* edge event. an edge of WF (P, t) vanishes.
* In SK(P), such a topology change is witnessed by nodes.

edge events

ToPOLGY CHANGES — SPLIT EVENTS

» Wavefront topology changes over time.

TOPOLGY CHANGES — SPLIT EVENTS

» Wavefront topology changes over time.
* edge event. an edge of WF (P, t) vanishes.

edge events

TOPOLGY CHANGES — SPLIT EVENTS

» Wavefront topology changes over time.
* edge event. an edge of WF (P, t) vanishes.

TOPOLGY CHANGES — SPLIT EVENTS

» Wavefront topology changes over time.
* edge event. an edge of WF (P, t) vanishes.
* split event:. wavefront splits into two parts.

split event

TOPOLGY CHANGES — SPLIT EVENTS

» Wavefront topology changes over time.
* edge event. an edge of WF (P, t) vanishes.
* split event:. wavefront splits into two parts.

* In SKC(P), events (topology changes) are witnessed by
nodes.

split event

TOPOLGY CHANGES — SPLIT EVENTS

» Wavefront topology changes over time.
* edge event. an edge of WF (P, t) vanishes.
* split event:. wavefront splits into two parts.

* In SKC(P), events (topology changes) are witnessed by
nodes.

split event
edge events

STRAIGHT SKELETON OF A PSLG

« This definition can easily be expanded to work for arbitrary
planar straight line graphs instead of just simple polygons.

VIV

SUMMARY: STRAIGHT SKELETONS

* The straight skeleton is the union of traces of wavefront
vertices over the propagation process.

 The topology of the wavefront changes with time due to
edge and split events. These are witnessed in SK as
nodes.

APPLICATIONS: ROOF MODELING

image credit: Stefan Huber

APPLICATIONS: GIS

image credit: Stefan Huber

APPLICATIONS: OFFSETTING

L IN_Tt

APPLICATIONS: OFFSETTING

APPLICATIONS: OFFSETTING

APPLICATIONS: CUT AND FOLD

[D DL98] image credit: Erik Demaine

APPLICATIONS: AND MUCH MORE

* Design of Pop-Up cards [Sugi13].
+ Shape reconstruction and contour interpolation [OPC96].

* Area collapsing in geographic maps and centerlines of
roads [HS08].

COMPUTING THE STRAIGHT SKELETON

« Common approach: simulate the wavefront propagation.
* Problem: When will the next event happen, and what is it?
+ If we solve this, we can incrementally construct the SK.

COMPUTING THE STRAIGHT SKELETON

« Common approach: simulate the wavefront propagation.
* Problem: When will the next event happen, and what is it?
+ If we solve this, we can incrementally construct the SK.

COMPUTING THE STRAIGHT SKELETON

« Common approach: simulate the wavefront propagation.
* Problem: When will the next event happen, and what is it?
+ If we solve this, we can incrementally construct the SK.

COMPUTING THE STRAIGHT SKELETON

« Common approach: simulate the wavefront propagation.
* Problem: When will the next event happen, and what is it?
+ If we solve this, we can incrementally construct the SK.

COMPUTING THE STRAIGHT SKELETON

« Common approach: simulate the wavefront propagation.
* Problem: When will the next event happen, and what is it?
+ If we solve this, we can incrementally construct the SK.

COMPUTING THE STRAIGHT SKELETON

« Common approach: simulate the wavefront propagation.
* Problem: When will the next event happen, and what is it?
+ If we solve this, we can incrementally construct the SK.

COMPUTING THE STRAIGHT SKELETON

« Common approach: simulate the wavefront propagation.
* Problem: When will the next event happen, and what is it?
+ If we solve this, we can incrementally construct the SK.

COMPUTING THE STRAIGHT SKELETON

« Common approach: simulate the wavefront propagation.
* Problem: When will the next event happen, and what is it?
+ If we solve this, we can incrementally construct the SK.

COMPUTING THE STRAIGHT SKELETON

« Common approach: simulate the wavefront propagation.
* Problem: When will the next event happen, and what is it?
+ If we solve this, we can incrementally construct the SK.

COMPUTING THE STRAIGHT SKELETON

« Common approach: simulate the wavefront propagation.
* Problem: When will the next event happen, and what is it?
+ If we solve this, we can incrementally construct the SK.

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

« Collapsing triangles witness edge and split events.

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

« Collapsing triangles witness edge and split events.

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

« Collapsing triangles witness edge and split events.

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

« Collapsing triangles witness edge and split events.

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

« Collapsing triangles witness edge and split events.

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

* Collapsing triangles witness edge and split events.

» Compute collapse times of triangles.

A collapses

Ap(time)

L L
25 3.0
time

TRIANGULATION-BASED ALGORITHM

* Aichholzer, Aurenhammer [AA98].

» Maintain a kinetic triangulation of the points of the plane
not yet visited.

* Collapsing triangles witness edge and split events.

» Compute collapse times of triangles.
+ Maintain a priority queue of collapses.

» On events, update triangulation and priority queue as
required.

» We can always easily find the next event, and thus
compute the straight skeleton.

TRIANGULATION-BASED ALGORITHM

« Caveat: Not all collapses witness changes in the wavefront
topology.

TRIANGULATION-BASED ALGORITHM

« Caveat: Not all collapses witness changes in the wavefront
topology.

TRIANGULATION-BASED ALGORITHM

« Caveat: Not all collapses witness changes in the wavefront
topology.

TRIANGULATION-BASED ALGORITHM

« Caveat: Not all collapses witness changes in the wavefront
topology.
* Such collapses cannot be ignored.

TRIANGULATION-BASED ALGORITHM

« Caveat: Not all collapses witness changes in the wavefront
topology.

+ Such collapses cannot be ignored.

* Instead they need special processing: flip events.

TRIANGULATION-BASED ALGORITHM

« Caveat: Not all collapses witness changes in the wavefront
topology.

+ Such collapses cannot be ignored.

* Instead they need special processing: flip events.

TRIANGULATION-BASED ALGORITHM

« Caveat: Not all collapses witness changes in the wavefront
topology.

+ Such collapses cannot be ignored.

* Instead they need special processing: flip events.

TRIANGULATION-BASED ALGORITHM

« Caveat: Not all collapses witness changes in the wavefront
topology.

+ Such collapses cannot be ignored.

* Instead they need special processing: flip events.

TRIANGULATION-BASED ALGORITHM

« Caveat: Not all collapses witness changes in the wavefront
topology.

+ Such collapses cannot be ignored.

* Instead they need special processing: flip events.

CONTRIBUTION [PHH12]

+ We have implemented this algorithm.
« We filled in gaps in the description of the algorithm.

 The algorithm does not always work when input is not in
general position. We have identified and corrected these
flaws.

» We have run extensive tests using this code.

FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

FLIP-EVENT LOOPS

» Without general position, this algorithm can end up in
infinite loops.

 This is not a result of inexact floating point operations. The
same can happen with exact arithmetic!

AVOIDING FLIP-EVENT LOOPS WITH EGC

If we had exact arithmetic operations, the following would work:

» First, pick the non-flip event — reduces triangles

* If only flip events are left, pick the one with the longest
edge to flip — reduces longest edge (count or length)

20

DETECTING FLIP-EVENT LOOPS

* Keep a history of flip events (eq, es, ...) where each
e = (f,', A,’).

« This history can be cleared when we encounter an edge or
split event.

« If we encounter a flip event a second time, we may be in a
flip-event loop.

21

HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

22

HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

22

HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

22

HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

- ~a
- ~
- -~
- -~
- -
- “a
-® -~

22

HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

»!
-
- ~
\\\\\\\\
\\\\\
- S~
-" S~

22

HANDLING FLIP-EVENT LOOPS

Brief outline:

+ Identify the polygon P which has collapsed to a straight
line.

* Retriangulate P and its neighborhood.

-
- ~
'''''
- ~y
- S
-
-

~
e

 This approach is also applicable to kinetic triangulations in
other algorithms [MHH12].

22

NUMBER OF FLIP EVENTS

« O(n®) is the best known upper bound on the number of flip
events,

* No input is known that results in more than quadratically
many flip events.

* It turns out that for practical data the number of flip events
is very linear.

23

NUMBER OF FLIP EVENTS, II

flips/num v

102 10° 10* 10°
input size (number of vertices)

10°

24

PERFORMANCE OBSERVATIONS

theoretical worst case practical
runtime space runtime | space
E&E' || o(n'7/11+e) | o(n'7/11+¢) N/A
CGAL? | O(n?logn) O(n?) O(n?logn) | O(n?)
Bone® || O(n?log n) O(n) O(nlogn) | O(n)
Surfer* || O(n®log n) o(n) O(nlogn) | O(n)

'Eppstein and Erickson [EE99]

2F, Cacciola, submission to CGAL, 2004
3Huber and Held [HH10]
“Palfrader et al. [PHH12], based on Aichholzer and Aurenhammer [AA98]

25

RUNTIME TESTS

I T R iy O
3 10 4 ' 5
-~ P
2 s 5 100MB
S 01 Surfer %
= 001] L e e 11 e e 1 10MB mRRs T
10 100 10 10 10 10t 10 10

Runtime and memory usage behavior of CGAL, Bone, and
Surfer for inputs of different sizes.
Bone and Surfer use their IEEE 754 double precision backend.

MPFR

Slowdown factor

0

1000

2000 3000
MPER precision (bits)

slowdown

4000

5000

Blowup factor

@
s

N
8

S

0

1000

2000 3000
MPER precision (bits)

blowup

4000

5000

27

SUMMARY

We have implemented Aichholzer and Aurenhammer’s
algorithm from 1998, filling in details in the algorithm
description.

We fixed real problems that arise in the absence of general
position.

Our approach to handling flip events has wider
applications.

The implementation runs in O(nlog n) time for real-world
data. The number of flip events is linear in practice.

It is industrial-strength, having been tested on tens of
thousands of inputs.

It is the fastest straight skeleton construction code to date,
handling millions of vertices in mere seconds.

28

FUTURE WORK: MITERED REFLEX VERTICES

» The current definition causes fast moving vertices for
angles approaching 2 - .

29

FUTURE WORK: MITERED REFLEX VERTICES

» The current definition causes fast moving vertices for
angles approaching 2 - .

29

FUTURE WORK: MITERED REFLEX VERTICES

» The current definition causes fast moving vertices for
angles approaching 2 - .

——

29

FUTURE WORK: MITERED REFLEX VERTICES

» The current definition causes fast moving vertices for
angles approaching 2 - .

29

FUTURE WORK: MITERED REFLEX VERTICES

» The current definition causes fast moving vertices for
angles approaching 2 - .

* Investigate and implement some kind of restricted miters.

29

FUTURE WORK: MITERED REFLEX VERTICES

» The current definition causes fast moving vertices for
angles approaching 2 - .

* Investigate and implement some kind of restricted miters.

29

FUTURE WORK: UPPER BOUND

« O(n®) is the best known upper bound on the number of flip
events.

30

FUTURE WORK: UPPER BOUND

« O(n®) is the best known upper bound on the number of flip
events.

- But Rubin showed O(n?*¢) for kinetic Delaunay
Triangulations where vertices move at unit
speed [Rubin13].

« Can we transfer this result?

30

FUTURE WORK: WEIGHTED STRAIGHT SKELETON

* Weighted SK: Edges move at different speeds, maybe
even negative speeds.

» Which of the properties of the straight skeleton (planarity,

tree structure, faces are monotone) carry over to weighted
straight skeletons [BHHKP13]?

31

QUESTIONS

Thank you for your attention.

Questions |:|

32

REFERENCES I

Oswin Aichholzer, Franz Aurenhammer, David Alberts, Bernd Géartner, "A Novel Type of Skeleton for Polygons”,
Journal of Universal Computer Science, Volume 1, Issue 12, pages 752-761, 1995

J.M. Oliva, M. Perrin, S. Coquillart, "3D Reconstruction of Complex Polyhedral Shapes from Contours Using a
Simplified Generalized Voronoi Diagram”, Computer Graphics Forum. Volume 15, Issue 3, pages 397—408, 1996

Oswin Aichholzer, Franz Aurenhammer, "Straight Skeletons for General Polygonal Figures in the Plane”,
Voronoi's Impact on Modern Sciences Il, pages 7-21, 1998

Erik Demaine, Martin Demaine, Anna Lubiw "Folding and Cutting Paper”, Revised Papers from the Japan
Conference on Discrete and Computational Geometry (JCDCG'98)

David Eppstein, Jeff Erickson, "Raising Roofs, Crashing Cycles, and Playing Pool Applications of a Data
Structure for Finding Pairwise Interactions”, Discrete & Computational Geometry, Volume 22, pages 569-592,
1999

Kokichi Sugihara, "Design of Pop-Up Cards Based on Weighted Straight Skeletons”, Proceedings of the 10t
International Symposium on Voronoi Diagrams in Science and Engineering (ISVD'13)

J.-H. Haunert, M. Sester, "Area Collapse and Road Centerlines Based on Straight Skeletons”, Geolnformatica,
Volume 12, pages 169-191, 2008

Stefan Huber, Martin Held, "Computing Straight Skeletons of Planar Straight-Line Graphs Based on Motorcycle
Graphs”, Proceedings of the 22t Canadian Conference on Computational Geometry (CCCG 2010)

Peter Palfrader, Martin Held, Stefan Huber, "On Computing Straight Skeletons by Means of Kinetic
Triangulations”, Proceedings of the 20" Annual European Symposium on Algorithms (ESA 2012)

Willi Mann, Martin Held, Stefan Huber, "Computing Motorcycle Graphs Based on Kinetic Triangulations”,
Proceedings of the 24! Canadian Conference on Computational Geometry (CCCG 2012)

Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, Peter Palfrader, "Weighted Straight Skeletons In the
Plane”, Proceedings of the 25! Canadian Conference on Computational Geometry (CCCG 2013)

33

REFERENCES II

e Natan Rubin, "On Kinetic Delaunay Triangulations; A Near Quadratic Bound for Unit Speed Motions” Accepted to
54" Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013)

34

GALLERY: BORDERS OF AUSTRIA

35

GALLERY: RANDOM POLYGON

36

GALLERY: PCB

37

GALLERY: POLYGON WITH HOLE

38

GALLERY: CIRCULAR HOLES

®
®

®
®

GALLERY: MORE HOLES

GALLERY: ALMOST POLYGON

37

7

=

N/

D

41

GALLERY: STAR

42

GALLERY: SPIRALS

MEDIAL AXIS VS. SK

VD-based MA

SK

44

ALTERNATE COMPUTATION

A collapses

f(time)

2.5 3.0
time

45

INFINITELY FAST VERTICES

€1

€2

46

TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

47

TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

47

TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

47

TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

+ We need to update the triangulation at some point before
this happens, but how?

47

TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

+ We need to update the triangulation at some point before
this happens, but how?

47

TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

+ We need to update the triangulation at some point before
this happens, but how?

47

TRIANGULATING

« Triangulate the convex hull.

» Unfortunately the convex hull changes with time, and it
matters.

* We need to update the triahgulétion at some point before
this happens, but how?

47

()2 FOR FLIP EVENTS

T BB

48

{2 FOR NON-FLIP EVENTS

Q(n) triangles

" QO(n) edge events

49

AFFECTED TRIANGLES, MAX

10*

<Y

affected triangles
2

2

10°

10 10* 10°
input size (number of vertices)

in edge events

10°

affected triangles

10*

2

D

2

10°

10 10* 10°
input size (number of vertices)

in split events

10°

50

AFFECTED TRIANGLES, AVG

10%

affected A/event

100 F

101

10? 103 10* 10°
input size (number of vertices)

10°

51

TIME SPENT, PHASES

100 % T
T 80%
o
o
“—
@]
Q
80 60% [
S o
=
O]
(o]
5
& 40%
o —_
.g $
=
5 20% —_
-
0%
Q‘o&%\é\o% ‘ o\)\@(o
Q‘e‘ R

52

	Introduction
	Definition
	Applications

	Triangulation-based Algorithm
	Basic Idea
	Flaws of the original Algorithm
	Experimental Results

	Future Work
	Appendix
	References
	Gallery

